[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2022-08-30 00:54:38 +00:00
parent 0eaa2d3583
commit bbcfff8e7c
167 changed files with 310 additions and 310 deletions

View File

@@ -324,7 +324,7 @@ for different problem sizes.</p>
0 4096.0 9.600000 9.600000
1 8192.0 19.200000 19.200000
2 16384.0 38.400001 38.400001
3 32768.0 63.999998 63.999998
3 32768.0 76.800002 76.800002
4 65536.0 127.999995 127.999995
5 131072.0 219.428568 219.428568
6 262144.0 341.333321 384.000001
@@ -334,12 +334,12 @@ for different problem sizes.</p>
10 4194304.0 780.190482 780.190482
11 8388608.0 812.429770 812.429770
12 16777216.0 833.084721 833.084721
13 33554432.0 842.004273 842.004273
13 33554432.0 842.004273 843.811163
14 67108864.0 847.448255 848.362445
15 134217728.0 849.737435 850.656574
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 47.967 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 47.807 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>

View File

@@ -374,17 +374,17 @@ We will then compare its performance against (1) <code class="code docutils lite
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 512.000001 546.133347 192.752942
1 384.0 614.400016 585.142862 153.600004
2 512.0 655.360017 585.142849 154.566038
0 256.0 512.000001 546.133347 186.181817
1 384.0 585.142862 585.142862 151.703707
2 512.0 655.360017 585.142849 156.038096
3 640.0 682.666684 640.000002 160.000000
4 768.0 722.823517 664.216187 162.754967
4 768.0 722.823517 664.216187 163.839992
.. ... ... ... ...
93 12160.0 814.058574 406.179533 198.834951
94 12288.0 814.111783 415.661740 199.096718
95 12416.0 812.498981 412.149375 198.755369
96 12544.0 812.566838 412.546756 199.012395
97 12672.0 812.633240 412.097543 199.069228
93 12160.0 814.058574 406.179533 198.936606
94 12288.0 814.111783 415.661740 199.197579
95 12416.0 813.330613 412.149375 198.854847
96 12544.0 812.566838 413.396498 199.012395
97 12672.0 812.633240 412.097543 199.167004
[98 rows x 4 columns]
</pre></div>
@@ -397,7 +397,7 @@ We will then compare its performance against (1) <code class="code docutils lite
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 23.856 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 23.484 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>

View File

@@ -568,7 +568,7 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 256.0 2.730667 ... 3.276800 2.978909
0 256.0 2.730667 ... 3.276800 3.276800
1 384.0 7.372800 ... 8.507077 8.507077
2 512.0 14.563555 ... 16.384000 16.384000
3 640.0 22.260869 ... 24.380953 24.380953
@@ -579,31 +579,31 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
8 1280.0 51.200001 ... 56.888887 56.888887
9 1408.0 64.138541 ... 67.305878 67.305878
10 1536.0 80.430545 ... 79.526831 78.643199
11 1664.0 62.929456 ... 62.061463 61.636381
11 1664.0 62.929456 ... 62.061463 62.061463
12 1792.0 72.512412 ... 72.047592 71.588687
13 1920.0 69.120002 ... 70.530615 70.172588
14 2048.0 73.908442 ... 76.959706 76.959706
15 2176.0 83.500614 ... 86.367588 85.269692
16 2304.0 68.251065 ... 76.809875 76.563695
17 2432.0 71.305746 ... 74.918570 84.877538
18 2560.0 77.833728 ... 81.310171 80.908642
19 2688.0 83.277839 ... 89.254248 88.422041
20 2816.0 79.298560 ... 82.759409 83.233226
21 2944.0 82.373605 ... 82.373605 80.510553
22 3072.0 82.003045 ... 88.473602 87.516392
23 3200.0 84.656085 ... 95.736729 94.674553
24 3328.0 82.891535 ... 83.130825 81.162679
25 3456.0 81.683457 ... 91.407671 90.994998
26 3584.0 84.905948 ... 90.364394 95.553020
27 3712.0 85.528545 ... 82.220033 88.640059
28 3840.0 81.859361 ... 86.130841 90.872641
29 3968.0 85.812429 ... 90.589410 85.751184
30 4096.0 93.142072 ... 91.304576 88.243079
13 1920.0 69.120002 ... 70.530615 70.530615
14 2048.0 73.908442 ... 77.314362 76.959706
15 2176.0 83.500614 ... 85.998493 85.632545
16 2304.0 68.446623 ... 76.809875 76.563695
17 2432.0 71.305746 ... 83.366361 84.877538
18 2560.0 77.833728 ... 81.310171 81.108913
19 2688.0 82.823267 ... 89.888756 89.254248
20 2816.0 79.154642 ... 83.552120 82.602666
21 2944.0 82.237674 ... 82.373605 83.060049
22 3072.0 78.697851 ... 88.473602 89.170242
23 3200.0 83.879425 ... 94.604578 94.256261
24 3328.0 82.369902 ... 84.348328 84.298943
25 3456.0 82.773682 ... 84.156124 87.870919
26 3584.0 87.296493 ... 97.100854 88.849200
27 3712.0 84.088676 ... 83.247783 86.641231
28 3840.0 84.615146 ... 85.863352 91.097196
29 3968.0 85.812429 ... 84.156250 90.254387
30 4096.0 89.210850 ... 93.271527 86.313653
[31 rows x 5 columns]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 25.284 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 26.564 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>

View File

@@ -371,7 +371,7 @@ to explore the <cite>triton/language/random</cite> folder!</p>
<dd><p>Nitish Srivastava and Geoffrey Hinton and Alex Krizhevsky and Ilya Sutskever and Ruslan Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, JMLR 2014</p>
</dd>
</dl>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.010 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.011 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-04-low-memory-dropout-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/c9aed78977a4c05741d675a38dde3d7d/04-low-memory-dropout.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">04-low-memory-dropout.py</span></code></a></p>

View File

@@ -194,36 +194,36 @@ to download the full example code</p>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>layer-norm-backward:
N Triton Torch Apex
0 1024.0 311.088617 99.096776 307.200008
1 1536.0 351.085717 133.083026 338.201833
2 2048.0 423.724127 162.217818 325.509933
3 2560.0 461.954908 182.857144 325.079368
4 3072.0 511.999982 191.501303 319.168834
5 3584.0 554.941930 208.271186 309.410081
6 4096.0 568.231237 220.412561 300.623865
7 4608.0 498.162157 231.849059 287.999990
8 5120.0 525.128191 242.845844 287.102804
9 5632.0 538.517949 243.107920 290.683877
10 6144.0 542.117638 248.661056 286.322318
11 6656.0 527.207907 256.000009 286.279570
12 7168.0 505.976473 262.243907 288.644296
13 7680.0 481.253256 260.707203 277.172933
14 8192.0 460.440290 268.957600 287.018988
15 8704.0 416.958106 267.472468 284.987724
16 9216.0 428.651187 273.066667 289.507855
17 9728.0 438.857162 280.278512 288.950501
18 10240.0 447.650282 286.767793 289.811322
19 10752.0 429.364408 246.464170 290.267711
20 11264.0 429.104745 245.091565 285.767446
21 11776.0 421.198220 249.447482 288.686414
22 12288.0 420.102570 254.673582 295.207195
23 12800.0 415.696898 253.465340 288.180121
24 13312.0 412.242569 252.559690 290.179836
25 13824.0 405.098897 257.190689 292.571423
26 14336.0 397.761846 254.673567 286.481278
27 14848.0 383.586664 257.108233 289.246765
28 15360.0 374.634130 257.790220 286.656296
29 15872.0 366.982663 262.890274 291.229369
0 1024.0 311.088617 98.698793 303.407414
1 1536.0 351.085717 135.529409 344.523365
2 2048.0 427.408686 160.104230 323.368435
3 2560.0 465.454542 182.314537 326.808501
4 3072.0 515.580429 192.501302 316.429186
5 3584.0 554.941930 208.271186 308.301075
6 4096.0 571.534884 220.907859 297.890900
7 4608.0 500.416301 232.825259 291.799469
8 5120.0 527.381977 241.414550 285.104413
9 5632.0 538.517949 243.545956 290.060087
10 6144.0 546.133354 249.081070 286.322318
11 6656.0 528.953642 256.000009 287.309361
12 7168.0 512.000004 258.694737 283.881181
13 7680.0 482.513091 264.447629 280.975614
14 8192.0 460.440290 267.493874 285.767442
15 8704.0 416.958106 268.159180 285.377055
16 9216.0 429.483477 272.394084 288.751954
17 9728.0 438.033784 280.278512 289.308559
18 10240.0 446.025405 287.102804 290.840246
19 10752.0 430.797982 246.699797 290.594591
20 11264.0 427.746848 246.432094 288.512281
21 11776.0 421.826879 249.667843 288.686414
22 12288.0 419.504980 254.453844 294.617366
23 12800.0 415.696898 253.884294 289.811310
24 13312.0 411.711355 252.559690 290.443638
25 13824.0 407.087128 256.991469 292.056329
26 14336.0 396.844280 253.921779 286.719986
27 14848.0 384.414233 257.293872 289.012175
28 15360.0 376.932517 257.970599 288.676598
29 15872.0 369.116300 263.253636 291.452168
</pre></div>
</div>
<div class="line-block">
@@ -477,7 +477,7 @@ to download the full example code</p>
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 12.368 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 12.911 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>

View File

@@ -174,7 +174,7 @@
<div class="section" id="computation-times">
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline"></a></h1>
<p><strong>12:49.485</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<p><strong>12:50.776</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 85%" />
@@ -183,23 +183,23 @@
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
<td><p>05:25.284</p></td>
<td><p>05:26.564</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
<td><p>03:23.856</p></td>
<td><p>03:23.484</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">Layer Normalization</span></a> (<code class="docutils literal notranslate"><span class="pre">05-layer-norm.py</span></code>)</p></td>
<td><p>02:12.368</p></td>
<td><p>02:12.911</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
<td><p>01:47.967</p></td>
<td><p>01:47.807</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>
<td><p>00:00.010</p></td>
<td><p>00:00.011</p></td>
<td><p>0.0 MB</p></td>
</tr>
</tbody>