[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2022-09-06 00:50:44 +00:00
parent af0e35297e
commit c46759fc89
161 changed files with 238 additions and 238 deletions

View File

@@ -324,10 +324,10 @@ for different problem sizes.</p>
0 4096.0 9.600000 9.600000
1 8192.0 19.200000 19.200000
2 16384.0 38.400001 38.400001
3 32768.0 63.999998 76.800002
3 32768.0 76.800002 76.800002
4 65536.0 127.999995 127.999995
5 131072.0 219.428568 219.428568
6 262144.0 341.333321 384.000001
6 262144.0 384.000001 341.333321
7 524288.0 472.615390 472.615390
8 1048576.0 614.400016 614.400016
9 2097152.0 722.823517 722.823517
@@ -339,7 +339,7 @@ for different problem sizes.</p>
15 134217728.0 849.737435 850.656574
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 49.601 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 38.916 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>

View File

@@ -374,17 +374,17 @@ We will then compare its performance against (1) <code class="code docutils lite
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 512.000001 546.133347 186.181817
0 256.0 512.000001 546.133347 188.321838
1 384.0 614.400016 585.142862 153.600004
2 512.0 655.360017 606.814814 154.566038
3 640.0 682.666684 640.000002 160.000000
4 768.0 722.823517 664.216187 162.754967
.. ... ... ... ...
93 12160.0 814.058574 406.179533 198.834951
94 12288.0 814.111783 416.101597 199.197579
95 12416.0 812.498981 412.149375 198.854847
96 12544.0 812.566838 412.971190 199.012395
97 12672.0 812.633240 412.097543 199.069228
93 12160.0 812.359066 405.755985 198.936606
94 12288.0 814.111783 415.222812 199.197579
95 12416.0 812.498981 411.296057 198.954424
96 12544.0 812.566838 412.546756 199.012395
97 12672.0 812.633240 412.097543 199.264875
[98 rows x 4 columns]
</pre></div>
@@ -397,7 +397,7 @@ We will then compare its performance against (1) <code class="code docutils lite
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 23.760 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 22.641 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>

View File

@@ -568,42 +568,42 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 256.0 2.730667 ... 3.276800 3.276800
0 256.0 2.978909 ... 3.276800 2.978909
1 384.0 7.372800 ... 8.507077 8.507077
2 512.0 14.563555 ... 16.384000 16.384000
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 32.768000 ... 34.028308 34.028308
5 896.0 39.025776 ... 39.025776 39.025776
6 1024.0 51.150050 ... 52.428801 52.428801
5 896.0 39.025776 ... 40.140799 39.025776
6 1024.0 51.150050 ... 53.773130 52.428801
7 1152.0 45.242181 ... 46.656000 46.656000
8 1280.0 51.200001 ... 56.888887 56.109587
9 1408.0 64.138541 ... 67.305878 66.485074
10 1536.0 80.430545 ... 79.526831 78.643199
11 1664.0 62.929456 ... 62.061463 62.061463
12 1792.0 72.512412 ... 72.047592 71.588687
13 1920.0 69.120002 ... 70.530615 70.172588
8 1280.0 51.200001 ... 56.888887 56.888887
9 1408.0 64.138541 ... 67.305878 67.305878
10 1536.0 80.430545 ... 79.526831 79.526831
11 1664.0 63.372618 ... 62.492442 62.061463
12 1792.0 72.983276 ... 72.512412 72.047592
13 1920.0 69.467336 ... 70.530615 70.530615
14 2048.0 73.908442 ... 77.314362 76.959706
15 2176.0 83.500614 ... 85.998493 85.269692
16 2304.0 68.251065 ... 76.319081 76.319081
17 2432.0 71.305746 ... 75.018596 84.367759
18 2560.0 78.019048 ... 80.709358 80.908642
19 2688.0 83.369354 ... 89.254248 89.464755
20 2816.0 79.587973 ... 81.369790 82.602666
21 2944.0 82.102191 ... 82.509987 81.967162
22 3072.0 82.661468 ... 87.651868 88.060814
23 3200.0 84.824389 ... 95.665176 95.522391
24 3328.0 84.003845 ... 81.346098 84.695641
25 3456.0 81.766291 ... 91.407671 90.687926
26 3584.0 83.954614 ... 98.591437 96.063450
27 3712.0 83.247783 ... 88.248537 84.874549
28 3840.0 84.809814 ... 92.198412 85.333335
29 3968.0 93.076994 ... 87.097744 90.926929
30 4096.0 86.258181 ... 87.495257 88.417474
16 2304.0 68.251065 ... 76.809875 76.563695
17 2432.0 71.305746 ... 74.918570 84.115159
18 2560.0 78.019048 ... 81.108913 80.709358
19 2688.0 83.737433 ... 89.676257 90.102270
20 2816.0 81.369790 ... 82.290955 82.916747
21 2944.0 81.967162 ... 79.865439 82.509987
22 3072.0 82.661468 ... 87.651868 86.315709
23 3200.0 79.012346 ... 89.887639 95.380032
24 3328.0 83.323259 ... 84.895397 85.602017
25 3456.0 82.604067 ... 90.281712 90.994998
26 3584.0 83.954614 ... 92.600816 97.100854
27 3712.0 85.528545 ... 89.997611 87.322855
28 3840.0 80.313725 ... 86.130841 91.172297
29 3968.0 85.810547 ... 91.403695 83.692683
30 4096.0 93.531519 ... 83.416859 86.258181
[31 rows x 5 columns]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 26.521 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 23.225 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>

View File

@@ -194,36 +194,36 @@ to download the full example code</p>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>layer-norm-backward:
N Triton Torch Apex
0 1024.0 311.088617 99.497980 311.088617
1 1536.0 351.085717 133.083026 341.333333
2 2048.0 423.724127 162.217818 327.679984
3 2560.0 461.954908 182.857144 326.808501
4 3072.0 515.580429 191.501303 317.793096
5 3584.0 554.941930 208.271186 309.410081
6 4096.0 568.231237 220.907859 294.323343
7 4608.0 498.162157 231.849059 292.571431
8 5120.0 526.252671 242.845844 287.775181
9 5632.0 538.517949 243.545956 290.683877
10 6144.0 544.118087 248.661056 286.322318
11 6656.0 527.207907 256.000009 286.279570
12 7168.0 507.469040 262.243907 288.644296
13 7680.0 482.513091 260.707203 276.756754
14 8192.0 460.440290 269.326017 287.018988
15 8704.0 416.958106 267.815384 284.987724
16 9216.0 429.483477 273.066667 289.507855
17 9728.0 438.857162 280.278512 288.950501
18 10240.0 447.650282 286.433562 290.153487
19 10752.0 430.079980 246.699797 290.267711
20 11264.0 429.786952 245.091565 285.767446
21 11776.0 421.826879 249.447482 288.686414
22 12288.0 420.102570 254.453844 294.911986
23 12800.0 415.696898 253.465340 288.450715
24 13312.0 412.242569 252.559690 290.179836
25 13824.0 405.098897 257.390218 292.571423
26 14336.0 397.761846 254.862216 286.481278
27 14848.0 383.999990 257.293872 289.246765
28 15360.0 374.634130 257.790220 286.433562
29 15872.0 366.982663 262.890274 291.229369
0 1024.0 311.088617 99.096776 307.200008
1 1536.0 354.461542 133.083026 338.201833
2 2048.0 423.724127 162.217818 325.509933
3 2560.0 461.954908 182.857144 328.556154
4 3072.0 519.211251 190.511624 317.793096
5 3584.0 551.384634 208.271186 309.410081
6 4096.0 568.231237 220.412561 302.473845
7 4608.0 498.162157 231.364016 287.251954
8 5120.0 529.655159 242.366855 284.444444
9 5632.0 540.671974 242.671458 290.060087
10 6144.0 544.118087 250.349744 286.879370
11 6656.0 534.260858 254.775119 285.257135
12 7168.0 512.000004 252.988236 277.024148
13 7680.0 481.253256 262.564106 276.341823
14 8192.0 462.607053 265.686491 281.270376
15 8704.0 416.958106 264.425310 283.056921
16 9216.0 428.651187 271.724806 289.507855
17 9728.0 438.033784 281.291575 290.027323
18 10240.0 447.650282 285.104413 288.112552
19 10752.0 430.797982 245.994291 290.594591
20 11264.0 429.786952 243.545956 283.966395
21 11776.0 424.998497 248.569911 288.391833
22 12288.0 421.302872 252.709503 293.737063
23 12800.0 415.696898 254.094291 290.909089
24 13312.0 412.242569 252.959629 291.503659
25 13824.0 403.130022 257.590056 291.799461
26 14336.0 396.844280 251.325065 284.585606
27 14848.0 381.942121 257.479779 289.012175
28 15360.0 376.547496 260.155264 289.583654
29 15872.0 366.982663 263.071829 291.452168
</pre></div>
</div>
<div class="line-block">
@@ -477,7 +477,7 @@ to download the full example code</p>
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 11.231 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 10.519 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>

View File

@@ -174,7 +174,7 @@
<div class="section" id="computation-times">
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline"></a></h1>
<p><strong>12:51.123</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<p><strong>12:35.312</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 85%" />
@@ -183,19 +183,19 @@
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
<td><p>05:26.521</p></td>
<td><p>05:23.225</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
<td><p>03:23.760</p></td>
<td><p>03:22.641</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">Layer Normalization</span></a> (<code class="docutils literal notranslate"><span class="pre">05-layer-norm.py</span></code>)</p></td>
<td><p>02:11.231</p></td>
<td><p>02:10.519</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
<td><p>01:49.601</p></td>
<td><p>01:38.916</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>