No longer repair the GA ; kill the invalid mutants instead
This commit is contained in:
@@ -3,8 +3,8 @@ import time
|
||||
import sys
|
||||
import tools
|
||||
import pyviennacl as vcl
|
||||
import numpy
|
||||
|
||||
import numpy as np
|
||||
import copy
|
||||
from deap import algorithms
|
||||
|
||||
from collections import OrderedDict as odict
|
||||
@@ -28,6 +28,7 @@ class GeneticOperators(object):
|
||||
self.ParameterType = TemplateType.Parameters
|
||||
self.build_template = build_template
|
||||
self.cache = {}
|
||||
self.indpb = 0.15
|
||||
|
||||
def init(self):
|
||||
while True:
|
||||
@@ -40,121 +41,54 @@ class GeneticOperators(object):
|
||||
if template.check(self.statement)==0 and occupancy_record.occupancy >= 10 :
|
||||
return result
|
||||
|
||||
@staticmethod
|
||||
def min_to_hyperbol(a, tup):
|
||||
x = 1
|
||||
for i in range(100):
|
||||
dx = 2*(-a**2/x**3 + a*tup[1]/x**2 - tup[0] + x);
|
||||
ddx = 6*a**2/x**4 - 4*a*tup[1]/x**3 + 2;
|
||||
if abs(dx) < 1e-7 or abs(ddx) < 1e-7:
|
||||
def mutate(self, individual):
|
||||
while True:
|
||||
new_individual = copy.deepcopy(individual)
|
||||
for i in new_individual:
|
||||
if random.random() < self.indpb:
|
||||
coef = random.choice([1, 2])
|
||||
funs = [lambda x:max(1, x/coef), lambda x:x*coef]
|
||||
F = random.choice(funs)
|
||||
nF = funs[1] if F==funs[0] else funs[0]
|
||||
#swapping-based mutations
|
||||
def m0():
|
||||
new_individual[1], new_individual[3] = new_individual[3], new_individual[1]
|
||||
def m1():
|
||||
new_individual[4], new_individual[6] = new_individual[6], new_individual[4]
|
||||
def m2():
|
||||
new_individual[9], new_individual[10] = new_individual[10], new_individual[9]
|
||||
#value modification mutations
|
||||
def m3():
|
||||
new_individual[0] = random.choice(self.parameters[0])
|
||||
def m4():
|
||||
new_individual[1] = F(new_individual[1])
|
||||
new_individual[9] = F(new_individual[9])
|
||||
def m5():
|
||||
new_individual[2] = F(new_individual[2])
|
||||
def m6():
|
||||
new_individual[3] = F(new_individual[3])
|
||||
new_individual[10] = F(new_individual[10])
|
||||
def m7():
|
||||
new_individual[4] = F(new_individual[4])
|
||||
def m8():
|
||||
new_individual[5] = F(new_individual[5])
|
||||
def m9():
|
||||
new_individual[6] = F(new_individual[6])
|
||||
def m10():
|
||||
new_individual[7] = random.choice([x for x in self.parameters[7] if x!=new_individual[7]])
|
||||
def m11():
|
||||
new_individual[8] = random.choice([x for x in self.parameters[8] if x!=new_individual[8]])
|
||||
def m12():
|
||||
new_individual[9] = F(new_individual[9])
|
||||
new_individual[10] = nF(new_individual[10])
|
||||
def m13():
|
||||
new_individual[10] = F(new_individual[10])
|
||||
new_individual[9] = nF(new_individual[9])
|
||||
random.choice([m0, m1, m2, m3, m4, m5, m6, m7, m8, m9, m10, m11, m12, m13])()
|
||||
template = self.build_template(self.TemplateType.Parameters(*new_individual))
|
||||
if not tools.skip(template, self.statement, self.device):
|
||||
break
|
||||
x-=dx/ddx;
|
||||
if x<1 or x>a:
|
||||
x = max(1, min(x, a))
|
||||
break
|
||||
new_x = int(closest_divisor(a, x))
|
||||
new_y = int(a / new_x)
|
||||
return (new_x, new_y)
|
||||
|
||||
def repair(self,func):
|
||||
|
||||
def repair_impl(child):
|
||||
D = odict(zip(self.parameter_names, child))
|
||||
dummy_template = self.build_template(self.ParameterType(*D.values()))
|
||||
FetchingPolicy = vcl.atidlas.FetchingPolicy;
|
||||
D['local-size-0'] = max(1, D['local-size-0'])
|
||||
D['local-size-1'] = max(1, D['local-size-1'])
|
||||
if 'local-size-1' not in D:
|
||||
D['local-size-0'] = min(D['local-size-0'], self.device.max_work_group_size)
|
||||
elif D['local-size-0']*D['local-size-1'] > self.device.max_work_group_size:
|
||||
res = GeneticOperators.min_to_hyperbol(self.device.max_work_group_size, (D['local-size-0'], D['local-size-1']))
|
||||
D['local-size-0'] = res[0]
|
||||
D['local-size-1'] = res[1]
|
||||
|
||||
if self.ParameterType is vcl.atidlas.MatrixProductTemplate.Parameters:
|
||||
if dummy_template.A_trans != 'N' and dummy_template.B_trans != 'T':
|
||||
D['simd-width'] = 1
|
||||
|
||||
D['kL'] = max(1, D['kL'])
|
||||
D['kS'] = max(1, D['kS'])
|
||||
|
||||
D['mS'] = max(D['mS'], D['simd-width'])
|
||||
D['nS'] = max(D['nS'], D['simd-width'])
|
||||
D['mS'] = D['mS'] - D['mS']%D['simd-width']
|
||||
D['nS'] = D['nS'] - D['nS']%D['simd-width']
|
||||
|
||||
|
||||
if D['A-fetch-policy']!=FetchingPolicy.FETCH_FROM_LOCAL and D['B-fetch-policy']!=FetchingPolicy.FETCH_FROM_LOCAL:
|
||||
D['local-fetch-size-0']=D['local-fetch-size-1']=0
|
||||
|
||||
else:
|
||||
res = GeneticOperators.min_to_hyperbol(D['local-size-0']*D['local-size-1'], (D['local-fetch-size-0'], D['local-fetch-size-1']))
|
||||
D['local-fetch-size-0'] = res[0]
|
||||
D['local-fetch-size-1'] = res[1]
|
||||
|
||||
if D['A-fetch-policy']==FetchingPolicy.FETCH_FROM_LOCAL and dummy_template.A_trans=='N' and D['kL'] % D['local-fetch-size-1'] > 0:
|
||||
D['kL'] = max(1,round(D['kL']/D['local-fetch-size-1']))*D['local-fetch-size-1']
|
||||
|
||||
if D['B-fetch-policy']==FetchingPolicy.FETCH_FROM_LOCAL and dummy_template.B_trans=='T' and D['kL'] % D['local-fetch-size-1'] > 0:
|
||||
D['kL'] = max(1,round(D['kL']/D['local-fetch-size-1']))*D['local-fetch-size-1']
|
||||
|
||||
D['kS'] = min(D['kL'], D['kS'])
|
||||
|
||||
return D.values()
|
||||
|
||||
def wrappper(*args, **kargs):
|
||||
offspring = func(*args, **kargs)
|
||||
for child in offspring:
|
||||
new_child = repair_impl(child)
|
||||
for i in range(len(child)):
|
||||
if child[i] != new_child[i]:
|
||||
child[i] = new_child[i]
|
||||
return offspring
|
||||
return wrappper
|
||||
|
||||
def mutate(self, individual, indpb = 0.15):
|
||||
for i in individual:
|
||||
if random.random() < indpb:
|
||||
coef = 2**(1 + numpy.random.poisson())
|
||||
funs = [lambda x:x/coef, lambda x:x*coef]
|
||||
F = random.choice(funs)
|
||||
nF = funs[1] if F==funs[0] else funs[0]
|
||||
#swapping-based mutations
|
||||
def m0():
|
||||
individual[1], individual[3] = individual[3], individual[1]
|
||||
def m1():
|
||||
individual[4], individual[6] = individual[6], individual[4]
|
||||
def m2():
|
||||
individual[9], individual[10] = individual[10], individual[9]
|
||||
#value modification mutations
|
||||
def m3():
|
||||
individual[0] = random.choice(self.parameters[0])
|
||||
def m4():
|
||||
individual[1] = F(individual[1])
|
||||
individual[9] = F(individual[9])
|
||||
def m5():
|
||||
individual[2] = F(individual[2])
|
||||
def m6():
|
||||
individual[3] = F(individual[3])
|
||||
individual[10] = F(individual[10])
|
||||
def m7():
|
||||
individual[4] = F(individual[4])
|
||||
def m8():
|
||||
individual[5] = F(individual[5])
|
||||
def m9():
|
||||
individual[6] = F(individual[6])
|
||||
def m10():
|
||||
individual[7] = random.choice([x for x in self.parameters[7] if x!=individual[7]])
|
||||
def m11():
|
||||
individual[8] = random.choice([x for x in self.parameters[8] if x!=individual[8]])
|
||||
def m12():
|
||||
individual[9] = F(individual[9])
|
||||
individual[10] = nF(individual[10])
|
||||
def m13():
|
||||
individual[10] = F(individual[10])
|
||||
individual[9] = nF(individual[9])
|
||||
random.choice([m0, m1, m2, m3, m4, m5, m6, m7, m8, m9, m10, m11, m12, m13])()
|
||||
return individual,
|
||||
return new_individual,
|
||||
|
||||
def evaluate(self, individual):
|
||||
if tuple(individual) not in self.cache:
|
||||
|
Reference in New Issue
Block a user