No longer repair the GA ; kill the invalid mutants instead
This commit is contained in:
@@ -48,10 +48,10 @@ TYPES = { 'vector-axpy': {'template':vcl.atidlas.VectorAxpyTemplate,
|
||||
def parameter_space(operation):
|
||||
simd = [1, 2, 4, 8]
|
||||
pow2_1D = [2**k for k in range(12)]
|
||||
pow2_2D = [8, 16]
|
||||
pow2_2D_unrolled = [1, 2, 4, 8]
|
||||
pow2_2D = [2**i for i in range(8)]
|
||||
pow2_2D_unrolled = [2**i for i in range(8)]
|
||||
FetchingPolicy = vcl.atidlas.FetchingPolicy
|
||||
fetch = [FetchingPolicy.FETCH_FROM_LOCAL]
|
||||
fetch = [FetchingPolicy.FETCH_FROM_LOCAL, FetchingPolicy.FETCH_FROM_GLOBAL_CONTIGUOUS, FetchingPolicy.FETCH_FROM_GLOBAL_STRIDED]
|
||||
if operation == 'vector-axpy': return [simd, pow2_1D, pow2_1D, fetch]
|
||||
if operation == 'reduction': return [simd, pow2_1D, pow2_1D, fetch]
|
||||
if operation == 'matrix-axpy': return [simd, pow2_2D, pow2_2D, pow2_2D, pow2_2D, fetch]
|
||||
@@ -97,7 +97,7 @@ def do_tuning(config_fname, spec_fname, viennacl_root):
|
||||
fname = os.devnull
|
||||
with open(fname, "w+") as archive:
|
||||
with vcl.Statement(node) as statement:
|
||||
result = optimize.exhaustive(statement, ctx, TYPES[operation]['template'], lambda p: TYPES[operation]['template'](p, *other_params),
|
||||
result = optimize.genetic(statement, ctx, TYPES[operation]['template'], lambda p: TYPES[operation]['template'](p, *other_params),
|
||||
TYPES[operation]['parameter-names'], parameter_space(operation), lambda t: TYPES[operation]['perf-index']([datatype().itemsize, s, t]), TYPES[operation]['perf-measure'], archive)
|
||||
if result and viennacl_root:
|
||||
vclio.generate_viennacl_headers(viennacl_root, device, datatype, operation, other_params, result[1])
|
||||
|
@@ -3,8 +3,8 @@ import time
|
||||
import sys
|
||||
import tools
|
||||
import pyviennacl as vcl
|
||||
import numpy
|
||||
|
||||
import numpy as np
|
||||
import copy
|
||||
from deap import algorithms
|
||||
|
||||
from collections import OrderedDict as odict
|
||||
@@ -28,6 +28,7 @@ class GeneticOperators(object):
|
||||
self.ParameterType = TemplateType.Parameters
|
||||
self.build_template = build_template
|
||||
self.cache = {}
|
||||
self.indpb = 0.15
|
||||
|
||||
def init(self):
|
||||
while True:
|
||||
@@ -40,121 +41,54 @@ class GeneticOperators(object):
|
||||
if template.check(self.statement)==0 and occupancy_record.occupancy >= 10 :
|
||||
return result
|
||||
|
||||
@staticmethod
|
||||
def min_to_hyperbol(a, tup):
|
||||
x = 1
|
||||
for i in range(100):
|
||||
dx = 2*(-a**2/x**3 + a*tup[1]/x**2 - tup[0] + x);
|
||||
ddx = 6*a**2/x**4 - 4*a*tup[1]/x**3 + 2;
|
||||
if abs(dx) < 1e-7 or abs(ddx) < 1e-7:
|
||||
break
|
||||
x-=dx/ddx;
|
||||
if x<1 or x>a:
|
||||
x = max(1, min(x, a))
|
||||
break
|
||||
new_x = int(closest_divisor(a, x))
|
||||
new_y = int(a / new_x)
|
||||
return (new_x, new_y)
|
||||
|
||||
def repair(self,func):
|
||||
|
||||
def repair_impl(child):
|
||||
D = odict(zip(self.parameter_names, child))
|
||||
dummy_template = self.build_template(self.ParameterType(*D.values()))
|
||||
FetchingPolicy = vcl.atidlas.FetchingPolicy;
|
||||
D['local-size-0'] = max(1, D['local-size-0'])
|
||||
D['local-size-1'] = max(1, D['local-size-1'])
|
||||
if 'local-size-1' not in D:
|
||||
D['local-size-0'] = min(D['local-size-0'], self.device.max_work_group_size)
|
||||
elif D['local-size-0']*D['local-size-1'] > self.device.max_work_group_size:
|
||||
res = GeneticOperators.min_to_hyperbol(self.device.max_work_group_size, (D['local-size-0'], D['local-size-1']))
|
||||
D['local-size-0'] = res[0]
|
||||
D['local-size-1'] = res[1]
|
||||
|
||||
if self.ParameterType is vcl.atidlas.MatrixProductTemplate.Parameters:
|
||||
if dummy_template.A_trans != 'N' and dummy_template.B_trans != 'T':
|
||||
D['simd-width'] = 1
|
||||
|
||||
D['kL'] = max(1, D['kL'])
|
||||
D['kS'] = max(1, D['kS'])
|
||||
|
||||
D['mS'] = max(D['mS'], D['simd-width'])
|
||||
D['nS'] = max(D['nS'], D['simd-width'])
|
||||
D['mS'] = D['mS'] - D['mS']%D['simd-width']
|
||||
D['nS'] = D['nS'] - D['nS']%D['simd-width']
|
||||
|
||||
|
||||
if D['A-fetch-policy']!=FetchingPolicy.FETCH_FROM_LOCAL and D['B-fetch-policy']!=FetchingPolicy.FETCH_FROM_LOCAL:
|
||||
D['local-fetch-size-0']=D['local-fetch-size-1']=0
|
||||
|
||||
else:
|
||||
res = GeneticOperators.min_to_hyperbol(D['local-size-0']*D['local-size-1'], (D['local-fetch-size-0'], D['local-fetch-size-1']))
|
||||
D['local-fetch-size-0'] = res[0]
|
||||
D['local-fetch-size-1'] = res[1]
|
||||
|
||||
if D['A-fetch-policy']==FetchingPolicy.FETCH_FROM_LOCAL and dummy_template.A_trans=='N' and D['kL'] % D['local-fetch-size-1'] > 0:
|
||||
D['kL'] = max(1,round(D['kL']/D['local-fetch-size-1']))*D['local-fetch-size-1']
|
||||
|
||||
if D['B-fetch-policy']==FetchingPolicy.FETCH_FROM_LOCAL and dummy_template.B_trans=='T' and D['kL'] % D['local-fetch-size-1'] > 0:
|
||||
D['kL'] = max(1,round(D['kL']/D['local-fetch-size-1']))*D['local-fetch-size-1']
|
||||
|
||||
D['kS'] = min(D['kL'], D['kS'])
|
||||
|
||||
return D.values()
|
||||
|
||||
def wrappper(*args, **kargs):
|
||||
offspring = func(*args, **kargs)
|
||||
for child in offspring:
|
||||
new_child = repair_impl(child)
|
||||
for i in range(len(child)):
|
||||
if child[i] != new_child[i]:
|
||||
child[i] = new_child[i]
|
||||
return offspring
|
||||
return wrappper
|
||||
|
||||
def mutate(self, individual, indpb = 0.15):
|
||||
for i in individual:
|
||||
if random.random() < indpb:
|
||||
coef = 2**(1 + numpy.random.poisson())
|
||||
funs = [lambda x:x/coef, lambda x:x*coef]
|
||||
def mutate(self, individual):
|
||||
while True:
|
||||
new_individual = copy.deepcopy(individual)
|
||||
for i in new_individual:
|
||||
if random.random() < self.indpb:
|
||||
coef = random.choice([1, 2])
|
||||
funs = [lambda x:max(1, x/coef), lambda x:x*coef]
|
||||
F = random.choice(funs)
|
||||
nF = funs[1] if F==funs[0] else funs[0]
|
||||
#swapping-based mutations
|
||||
def m0():
|
||||
individual[1], individual[3] = individual[3], individual[1]
|
||||
new_individual[1], new_individual[3] = new_individual[3], new_individual[1]
|
||||
def m1():
|
||||
individual[4], individual[6] = individual[6], individual[4]
|
||||
new_individual[4], new_individual[6] = new_individual[6], new_individual[4]
|
||||
def m2():
|
||||
individual[9], individual[10] = individual[10], individual[9]
|
||||
new_individual[9], new_individual[10] = new_individual[10], new_individual[9]
|
||||
#value modification mutations
|
||||
def m3():
|
||||
individual[0] = random.choice(self.parameters[0])
|
||||
new_individual[0] = random.choice(self.parameters[0])
|
||||
def m4():
|
||||
individual[1] = F(individual[1])
|
||||
individual[9] = F(individual[9])
|
||||
new_individual[1] = F(new_individual[1])
|
||||
new_individual[9] = F(new_individual[9])
|
||||
def m5():
|
||||
individual[2] = F(individual[2])
|
||||
new_individual[2] = F(new_individual[2])
|
||||
def m6():
|
||||
individual[3] = F(individual[3])
|
||||
individual[10] = F(individual[10])
|
||||
new_individual[3] = F(new_individual[3])
|
||||
new_individual[10] = F(new_individual[10])
|
||||
def m7():
|
||||
individual[4] = F(individual[4])
|
||||
new_individual[4] = F(new_individual[4])
|
||||
def m8():
|
||||
individual[5] = F(individual[5])
|
||||
new_individual[5] = F(new_individual[5])
|
||||
def m9():
|
||||
individual[6] = F(individual[6])
|
||||
new_individual[6] = F(new_individual[6])
|
||||
def m10():
|
||||
individual[7] = random.choice([x for x in self.parameters[7] if x!=individual[7]])
|
||||
new_individual[7] = random.choice([x for x in self.parameters[7] if x!=new_individual[7]])
|
||||
def m11():
|
||||
individual[8] = random.choice([x for x in self.parameters[8] if x!=individual[8]])
|
||||
new_individual[8] = random.choice([x for x in self.parameters[8] if x!=new_individual[8]])
|
||||
def m12():
|
||||
individual[9] = F(individual[9])
|
||||
individual[10] = nF(individual[10])
|
||||
new_individual[9] = F(new_individual[9])
|
||||
new_individual[10] = nF(new_individual[10])
|
||||
def m13():
|
||||
individual[10] = F(individual[10])
|
||||
individual[9] = nF(individual[9])
|
||||
new_individual[10] = F(new_individual[10])
|
||||
new_individual[9] = nF(new_individual[9])
|
||||
random.choice([m0, m1, m2, m3, m4, m5, m6, m7, m8, m9, m10, m11, m12, m13])()
|
||||
return individual,
|
||||
template = self.build_template(self.TemplateType.Parameters(*new_individual))
|
||||
if not tools.skip(template, self.statement, self.device):
|
||||
break
|
||||
return new_individual,
|
||||
|
||||
def evaluate(self, individual):
|
||||
if tuple(individual) not in self.cache:
|
||||
|
@@ -38,21 +38,19 @@ def exhaustive(statement, context, TemplateType, build_template, parameter_names
|
||||
|
||||
|
||||
def genetic(statement, context, TemplateType, build_template, parameter_names, all_parameters, compute_perf, perf_metric, out):
|
||||
gen = GeneticOperators(context.devices[0], statement, all_parameters, parameter_names, TemplateType, build_template)
|
||||
GA = GeneticOperators(context.devices[0], statement, all_parameters, parameter_names, TemplateType, build_template)
|
||||
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
|
||||
creator.create("Individual", list, fitness=creator.FitnessMin)
|
||||
|
||||
toolbox = base.Toolbox()
|
||||
toolbox.register("individual", tools.initIterate, creator.Individual, gen.init)
|
||||
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
|
||||
toolbox.register("evaluate", gen.evaluate)
|
||||
toolbox.register("mate", tools.cxTwoPoint)
|
||||
toolbox.decorate("mate", gen.repair)
|
||||
toolbox.register("mutate", gen.mutate)
|
||||
toolbox.decorate("mutate", gen.repair)
|
||||
toolbox.register("select", tools.selBest)
|
||||
toolbox.register("individual", deap.tools.initIterate, creator.Individual, GA.init)
|
||||
toolbox.register("population", deap.tools.initRepeat, list, toolbox.individual)
|
||||
toolbox.register("evaluate", GA.evaluate)
|
||||
toolbox.register("mate", deap.tools.cxTwoPoint)
|
||||
toolbox.register("mutate", GA.mutate)
|
||||
toolbox.register("select", deap.tools.selBest)
|
||||
|
||||
pop = toolbox.population(n=30)
|
||||
pop = toolbox.population(n=50)
|
||||
hof = deap.tools.HallOfFame(1)
|
||||
|
||||
best_performer = lambda x: max([compute_perf(hof[0].fitness.values[0]) for t in x])
|
||||
@@ -62,4 +60,4 @@ def genetic(statement, context, TemplateType, build_template, parameter_names, a
|
||||
stats.register("max (" + perf_metric + ")", lambda x: max([compute_perf(hof[0].fitness.values[0]) for t in x]))
|
||||
stats.register("profile ", lambda x: '(%s)'%','.join(map(str,hof[0])))
|
||||
|
||||
pop = eaMuPlusLambda(pop, toolbox, 30, 50, cxpb=0.2, mutpb=0.3, maxtime='3m0s', maxgen=200, halloffame=hof, compute_perf=compute_perf, perf_metric=perf_metric)
|
||||
pop = eaMuPlusLambda(pop, toolbox, 50, 70, cxpb=0.2, mutpb=0.3, maxtime='5m0s', maxgen=500, halloffame=hof, compute_perf=compute_perf, perf_metric=perf_metric)
|
||||
|
@@ -79,7 +79,7 @@ class OccupancyRecord:
|
||||
def __init__(self, dev, threads, shared_mem=0, registers=0):
|
||||
physical_limits = PhysicalLimits(dev)
|
||||
limits = [];
|
||||
allocated_warps = _int_ceiling(threads/physical_limits.threads_per_warp)
|
||||
allocated_warps = max(1,_int_ceiling(threads/physical_limits.threads_per_warp))
|
||||
max_warps_per_mp = physical_limits.warps_per_mp;
|
||||
limits.append((min(physical_limits.thread_blocks_per_mp, _int_floor(max_warps_per_mp/allocated_warps)), 'warps'))
|
||||
|
||||
|
Reference in New Issue
Block a user