[DOCS] Fix spelling (#664)

This PR applies minor spelling fix in comments and string literals to
`master`. It shouldn't hurt anything.
This commit is contained in:
Shintaro Iwasaki
2022-09-16 12:26:40 -07:00
committed by GitHub
parent 4580a04710
commit c668d6596e
16 changed files with 19 additions and 19 deletions

View File

@@ -152,7 +152,7 @@ def test_elementwise(N):
cur_mem_clock = nvsmi(['clocks.current.memory'])[0]
ref_mem_clock = mem_clocks[DEVICE_NAME]
max_gpu_perf = get_dram_gbps()
assert abs(cur_mem_clock - ref_mem_clock) < 10, f'GPU memmory must run at {ref_mem_clock} MHz'
assert abs(cur_mem_clock - ref_mem_clock) < 10, f'GPU memory must run at {ref_mem_clock} MHz'
z = torch.empty((N, ), dtype=torch.float16, device='cuda')
x = torch.randn_like(z)
y = torch.randn_like(z)

View File

@@ -55,7 +55,7 @@ def numpy_random(shape, dtype_str, rs: Optional[RandomState] = None, low=None, h
def to_triton(x: np.ndarray, device='cuda', dst_type=None) -> Union[TensorWrapper, torch.Tensor]:
'''
Note: We need dst_type becasue the type of x can be different from dst_type.
Note: We need dst_type because the type of x can be different from dst_type.
For example: x is of type `float32`, dst_type is `bfloat16`.
If dst_type is None, we infer dst_type from x.
'''
@@ -424,7 +424,7 @@ def test_unary_op(dtype_x, expr, device='cuda'):
# ----------------
# test math ops
# ----------------
# @pytest.mark.paramterize("expr", [
# @pytest.mark.parametrize("expr", [
# 'exp', 'log', 'cos', 'sin'
# ])