reducing overhead; reverted custom CL/ header because CL/cl.hpp was buggy

This commit is contained in:
Philippe Tillet
2015-01-28 22:07:09 -05:00
parent 1246fbe9a8
commit c7665021d1
21 changed files with 10317 additions and 1474 deletions

View File

@@ -40,7 +40,7 @@ void bench(ad::numeric_type dtype)
total_time += times.back();\
}\
float tres = median(times);\
std::cout << " " << PERF << std::flush;\
std::cout << " " << tres << std::flush;\
}
#define CL_BENCHMARK(OP, PERF) BENCHMARK(OP, PERF, ad::cl_ext::synchronize(ad::cl_ext::default_context()))
@@ -86,89 +86,89 @@ void bench(ad::numeric_type dtype)
}
std::cout << "\n\n" << std::flush;
std::cout << "#DOT" << std::endl;
for(std::vector<int_t>::const_iterator it = BLAS1_N.begin() ; it != BLAS1_N.end() ; ++it)
{
int_t N = *it;
std::cout << N;
/* ATIDLAS */
ad::array x(N, dtype), y(N, dtype);
ad::array scratch(N, dtype);
ad::scalar s(dtype);
CL_BENCHMARK(s = dot(x,y), bandwidth(2*N, tres, dtsize));
/* clAmdBlas */
#ifdef BENCH_CLAMDBLAS
CL_BENCHMARK(clAmdBlasSdot(N, s.data()(), 0, x.data()(), 0, 1, y.data()(), 0, 1, scratch.data()(), 1, &ad::cl_ext::get_queue(x.context(), 0)(), 0, NULL, NULL), bandwidth(2*N, tres, dtsize))
#endif
/* BLAS */
#ifdef BENCH_CBLAS
std::vector<float> cx(N), cy(N);
ad::copy(x, cx);
ad::copy(y, cy);
CPU_BENCHMARK(cblas_sdot(N, cx.data(), 1, cy.data(), 1), bandwidth(2*N, tres, dtsize));
#endif
std::cout << std::endl;
}
std::cout << "\n\n" << std::flush;
/*---------*/
/*--BLAS2--*/
/*---------*/
//T-layout
std::cout << "#GEMV-T" << std::endl;
for(std::vector<int>::const_iterator Mit = BLAS2_M.begin() ; Mit != BLAS2_M.end() ; ++Mit)
for(std::vector<int_t>::const_iterator Nit = BLAS2_N.begin() ; Nit != BLAS2_N.end() ; ++Nit)
{
int_t M = *Mit;
int_t N = *Nit;
std::cout << M << "," << N;
/* ATIDLAS */
ad::array A(N, M, dtype), y(M, dtype), x(N, dtype);
CL_BENCHMARK(y = dot(trans(A),x), bandwidth(M*N + M + N, tres, dtsize));
/* clAmdBlas */
#ifdef BENCH_CLAMDBLAS
CL_BENCHMARK(clAmdBlasSgemv(clAmdBlasColumnMajor, clAmdBlasTrans, N, M, 1, A.data()(), A.ld(), x.data()(), 0, 1, 0, y.data()(), 0, 1, 1, &ad::cl_ext::get_queue(x.context(), 0)(),0, NULL, NULL), bandwidth(M*N + M + N, tres, dtsize))
#endif
/* BLAS */
#ifdef BENCH_CBLAS
std::vector<float> cA(N*M), cx(N), cy(M);
ad::copy(x, cx);
ad::copy(y, cy);
ad::copy(A, cA);
CPU_BENCHMARK(cblas_sgemv(CblasColMajor, CblasTrans, N, M, 1, cA.data(), N, cx.data(), 1, 0, cy.data(), 1), bandwidth(M*N + M + N, tres, dtsize));
#endif
std::cout << std::endl;
}
std::cout << "\n\n" << std::flush;
// std::cout << "#DOT" << std::endl;
// for(std::vector<int_t>::const_iterator it = BLAS1_N.begin() ; it != BLAS1_N.end() ; ++it)
// {
// int_t N = *it;
// std::cout << N;
// /* ATIDLAS */
// ad::array x(N, dtype), y(N, dtype);
// ad::array scratch(N, dtype);
// ad::scalar s(dtype);
// CL_BENCHMARK(s = dot(x,y), bandwidth(2*N, tres, dtsize));
// /* clAmdBlas */
//#ifdef BENCH_CLAMDBLAS
// CL_BENCHMARK(clAmdBlasSdot(N, s.data()(), 0, x.data()(), 0, 1, y.data()(), 0, 1, scratch.data()(), 1, &ad::cl_ext::get_queue(x.context(), 0)(), 0, NULL, NULL), bandwidth(2*N, tres, dtsize))
//#endif
// /* BLAS */
//#ifdef BENCH_CBLAS
// std::vector<float> cx(N), cy(N);
// ad::copy(x, cx);
// ad::copy(y, cy);
// CPU_BENCHMARK(cblas_sdot(N, cx.data(), 1, cy.data(), 1), bandwidth(2*N, tres, dtsize));
//#endif
// std::cout << std::endl;
// }
// std::cout << "\n\n" << std::flush;
// /*---------*/
// /*--BLAS3--*/
// /*--BLAS2--*/
// /*---------*/
std::cout << "#GEMM-NT" << std::endl;
for(std::vector<int_t>::const_iterator Mit = BLAS3_M.begin() ; Mit != BLAS3_M.end() ; ++Mit)
for(std::vector<int_t>::const_iterator Nit = BLAS3_N.begin() ; Nit != BLAS3_N.end() ; ++Nit)
for(std::vector<int_t>::const_iterator Kit = BLAS3_K.begin() ; Kit != BLAS3_K.end() ; ++Kit)
{
int_t M = *Kit, N = *Kit, K = *Kit;
std::cout << M << "," << N << "," << K;
/* ATIDLAS */
ad::array C(M, N, dtype), A(M, K, dtype), B(N, K, dtype);
CL_BENCHMARK(C = dot(A,trans(B)), gflops((double)2*M*N*K, tres));
/* clAmdBlas */
#ifdef BENCH_CLAMDBLAS
CL_BENCHMARK(clAmdBlasSgemm(clAmdBlasColumnMajor, clAmdBlasNoTrans, clAmdBlasTrans, M, N, K, 1, A.data()(), A.ld(), B.data()(), B.ld(),
0, C.data()(), C.ld(), 1, &ad::cl_ext::get_queue(C.context(), 0)(),0, NULL, NULL), gflops((double)2*M*N*K, tres))
#endif
/* BLAS */
#ifdef BENCH_CBLAS
std::vector<float> cC(M*N), cA(M*K), cB(N*K);
ad::copy(C, cC);
ad::copy(A, cA);
ad::copy(B, cB);
CPU_BENCHMARK(cblas_sgemm(CblasColMajor, CblasNoTrans, CblasTrans, M, N, K, 1, cA.data(), M, cB.data(), N, 1, cC.data(), M), gflops((double)2*M*N*K, tres));
#endif
std::cout << std::endl;
}
// //T-layout
// std::cout << "#GEMV-T" << std::endl;
// for(std::vector<int>::const_iterator Mit = BLAS2_M.begin() ; Mit != BLAS2_M.end() ; ++Mit)
// for(std::vector<int_t>::const_iterator Nit = BLAS2_N.begin() ; Nit != BLAS2_N.end() ; ++Nit)
// {
// int_t M = *Mit;
// int_t N = *Nit;
// std::cout << M << "," << N;
// /* ATIDLAS */
// ad::array A(N, M, dtype), y(M, dtype), x(N, dtype);
// CL_BENCHMARK(y = dot(trans(A),x), bandwidth(M*N + M + N, tres, dtsize));
// /* clAmdBlas */
// #ifdef BENCH_CLAMDBLAS
// CL_BENCHMARK(clAmdBlasSgemv(clAmdBlasColumnMajor, clAmdBlasTrans, N, M, 1, A.data()(), A.ld(), x.data()(), 0, 1, 0, y.data()(), 0, 1, 1, &ad::cl_ext::get_queue(x.context(), 0)(),0, NULL, NULL), bandwidth(M*N + M + N, tres, dtsize))
// #endif
// /* BLAS */
// #ifdef BENCH_CBLAS
// std::vector<float> cA(N*M), cx(N), cy(M);
// ad::copy(x, cx);
// ad::copy(y, cy);
// ad::copy(A, cA);
// CPU_BENCHMARK(cblas_sgemv(CblasColMajor, CblasTrans, N, M, 1, cA.data(), N, cx.data(), 1, 0, cy.data(), 1), bandwidth(M*N + M + N, tres, dtsize));
// #endif
// std::cout << std::endl;
// }
// std::cout << "\n\n" << std::flush;
//// /*---------*/
//// /*--BLAS3--*/
//// /*---------*/
// std::cout << "#GEMM-NT" << std::endl;
// for(std::vector<int_t>::const_iterator Mit = BLAS3_M.begin() ; Mit != BLAS3_M.end() ; ++Mit)
// for(std::vector<int_t>::const_iterator Nit = BLAS3_N.begin() ; Nit != BLAS3_N.end() ; ++Nit)
// for(std::vector<int_t>::const_iterator Kit = BLAS3_K.begin() ; Kit != BLAS3_K.end() ; ++Kit)
// {
// int_t M = *Kit, N = *Kit, K = *Kit;
// std::cout << M << "," << N << "," << K;
// /* ATIDLAS */
// ad::array C(M, N, dtype), A(M, K, dtype), B(N, K, dtype);
// CL_BENCHMARK(C = dot(A,trans(B)), gflops((double)2*M*N*K, tres));
// /* clAmdBlas */
// #ifdef BENCH_CLAMDBLAS
// CL_BENCHMARK(clAmdBlasSgemm(clAmdBlasColumnMajor, clAmdBlasNoTrans, clAmdBlasTrans, M, N, K, 1, A.data()(), A.ld(), B.data()(), B.ld(),
// 0, C.data()(), C.ld(), 1, &ad::cl_ext::get_queue(C.context(), 0)(),0, NULL, NULL), gflops((double)2*M*N*K, tres))
// #endif
// /* BLAS */
// #ifdef BENCH_CBLAS
// std::vector<float> cC(M*N), cA(M*K), cB(N*K);
// ad::copy(C, cC);
// ad::copy(A, cA);
// ad::copy(B, cB);
// CPU_BENCHMARK(cblas_sgemm(CblasColMajor, CblasNoTrans, CblasTrans, M, N, K, 1, cA.data(), M, cB.data(), N, 1, cC.data(), M), gflops((double)2*M*N*K, tres));
// #endif
// std::cout << std::endl;
// }
}