[FRONTEND] Added default arguments to non-kernel @triton.jit'd function (#379)
This commit is contained in:
@@ -7,98 +7,56 @@ from . import core as tl
|
||||
# 2. multiply_low_high is currently inefficient.
|
||||
# 3. Even though technically philox sampling outputs int, in many places we pretends they were actualy uints e.g. uint_to_uniform_float
|
||||
|
||||
PHILOX_KEY_A: tl.constexpr = -1640531527 # 0x9E3779B9
|
||||
PHILOX_KEY_B: tl.constexpr = -1150833019 # 0xBB67AE85
|
||||
PHILOX_ROUND_A: tl.constexpr = -766435501 # 0xD2511F53
|
||||
PHILOX_ROUND_B: tl.constexpr = -845247145 # 0xCD9E8D57
|
||||
N_ROUNDS_DEFAULT = 10 # Default number of rounds for philox
|
||||
|
||||
@triton.jit
|
||||
def PHILOX_KEY_A():
|
||||
# 0x9E3779B9
|
||||
return -1640531527
|
||||
|
||||
|
||||
@triton.jit
|
||||
def PHILOX_KEY_B():
|
||||
# 0xBB67AE85
|
||||
return -1150833019
|
||||
|
||||
|
||||
@triton.jit
|
||||
def PHILOX_ROUND_A():
|
||||
# 0xD2511F53
|
||||
return -766435501
|
||||
|
||||
|
||||
@triton.jit
|
||||
def PHILOX_ROUND_B():
|
||||
# 0xCD9E8D57
|
||||
return -845247145
|
||||
# -------------------
|
||||
# randint
|
||||
# -------------------
|
||||
|
||||
@triton.jit
|
||||
def hacky_to_uint64(x):
|
||||
return ((x >> 1).to(tl.int64) << 1) + (x & 1).to(tl.int64)
|
||||
|
||||
|
||||
@triton.jit
|
||||
def single_round(c0, c1, c2, c3, k0, k1):
|
||||
A = PHILOX_ROUND_A()
|
||||
B = PHILOX_ROUND_B()
|
||||
_c0, _c2 = c0, c2
|
||||
c0 = tl.umulhi(B, _c2) ^ c1 ^ k0
|
||||
c2 = tl.umulhi(A, _c0) ^ c3 ^ k1
|
||||
c1 = B * _c2
|
||||
c3 = A * _c0
|
||||
def philox_f(c0, c1, c2, c3, k0, k1, n_rounds: tl.constexpr = N_ROUNDS_DEFAULT):
|
||||
"""
|
||||
Run `n_rounds` rounds of Philox for state (c0, c1, c2, c3) and key (k0, k1).
|
||||
"""
|
||||
for _ in range(n_rounds):
|
||||
# update random state
|
||||
A = PHILOX_ROUND_A
|
||||
B = PHILOX_ROUND_B
|
||||
_c0, _c2 = c0, c2
|
||||
c0 = tl.umulhi(B, _c2) ^ c1 ^ k0
|
||||
c2 = tl.umulhi(A, _c0) ^ c3 ^ k1
|
||||
c1 = B * _c2
|
||||
c3 = A * _c0
|
||||
# raise key
|
||||
k0 = k0 + PHILOX_KEY_A
|
||||
k1 = k1 + PHILOX_KEY_B
|
||||
return c0, c1, c2, c3
|
||||
|
||||
|
||||
@triton.jit
|
||||
def raise_key(k0, k1):
|
||||
return (k0 + PHILOX_KEY_A(), k1 + PHILOX_KEY_B())
|
||||
|
||||
@triton.jit
|
||||
def philox_f(c0, c1, c2, c3, k0, k1):
|
||||
c0, c1, c2, c3 = single_round(c0, c1, c2, c3, k0, k1)
|
||||
k0, k1 = raise_key(k0, k1)
|
||||
c0, c1, c2, c3 = single_round(c0, c1, c2, c3, k0, k1)
|
||||
k0, k1 = raise_key(k0, k1)
|
||||
c0, c1, c2, c3 = single_round(c0, c1, c2, c3, k0, k1)
|
||||
k0, k1 = raise_key(k0, k1)
|
||||
c0, c1, c2, c3 = single_round(c0, c1, c2, c3, k0, k1)
|
||||
k0, k1 = raise_key(k0, k1)
|
||||
c0, c1, c2, c3 = single_round(c0, c1, c2, c3, k0, k1)
|
||||
k0, k1 = raise_key(k0, k1)
|
||||
c0, c1, c2, c3 = single_round(c0, c1, c2, c3, k0, k1)
|
||||
k0, k1 = raise_key(k0, k1)
|
||||
c0, c1, c2, c3 = single_round(c0, c1, c2, c3, k0, k1)
|
||||
k0, k1 = raise_key(k0, k1)
|
||||
c0, c1, c2, c3 = single_round(c0, c1, c2, c3, k0, k1)
|
||||
k0, k1 = raise_key(k0, k1)
|
||||
c0, c1, c2, c3 = single_round(c0, c1, c2, c3, k0, k1)
|
||||
k0, k1 = raise_key(k0, k1)
|
||||
c0, c1, c2, c3 = single_round(c0, c1, c2, c3, k0, k1)
|
||||
return c0, c1, c2, c3
|
||||
|
||||
|
||||
|
||||
@triton.jit
|
||||
def uint32_to_uniform_float(x):
|
||||
def randint(seed, offset, n_rounds: tl.constexpr = N_ROUNDS_DEFAULT):
|
||||
"""
|
||||
Numerically stable function to convert a random integer into a random float uniformly sampled in [0, 1).
|
||||
This is originally designed from uint32, but it works with int32 too as long as the int32 uniformly
|
||||
covers all the possible values it can take.
|
||||
Given a :code:`seed` scalar and an :code:`offset` block, returns a single
|
||||
block of random :code:`int32`.
|
||||
|
||||
If you need multiple streams of random numbers,
|
||||
using `randint4x` is likely to be faster than calling `randint` 4 times.
|
||||
|
||||
:param seed: The seed for generating random numbers.
|
||||
:param offsets: The offsets to generate random numbers for.
|
||||
"""
|
||||
max = 4.656613e-10 # = 1/MAX_INT = 1/2147483647.
|
||||
x = tl.where(x < 0, -x - 1, x)
|
||||
return x * max
|
||||
ret, _, _, _ = randint4x(seed, offset, n_rounds)
|
||||
return ret
|
||||
|
||||
@triton.jit
|
||||
def pair_uniform_to_normal(u1, u2):
|
||||
"""Box-Muller transform"""
|
||||
u1 = tl.maximum(1.0e-7, u1)
|
||||
th = 6.283185307179586 * u2
|
||||
r = tl.sqrt(-2.0 * tl.log(u1))
|
||||
return r * tl.cos(th), r * tl.sin(th)
|
||||
|
||||
|
||||
@triton.jit
|
||||
def randint4x(seed, offset):
|
||||
def randint4x(seed, offset, n_rounds: tl.constexpr = N_ROUNDS_DEFAULT):
|
||||
"""
|
||||
Given a :code:`seed` scalar and an :code:`offset` block, returns four
|
||||
blocks of random :code:`int32`.
|
||||
@@ -114,27 +72,26 @@ def randint4x(seed, offset):
|
||||
seed = hacky_to_uint64(seed) # uint will solve this
|
||||
seed_hi = ((seed >> 32) & 0xffffffff).to(tl.int32)
|
||||
seed_lo = (seed & 0xffffffff).to(tl.int32)
|
||||
return philox_f(offset, z, z, z, seed_lo, seed_hi)
|
||||
return philox_f(offset, z, z, z, seed_lo, seed_hi, n_rounds)
|
||||
|
||||
|
||||
# -------------------
|
||||
# rand
|
||||
# -------------------
|
||||
|
||||
@triton.jit
|
||||
def randint(seed, offset):
|
||||
def uint32_to_uniform_float(x):
|
||||
"""
|
||||
Given a :code:`seed` scalar and an :code:`offset` block, returns a single
|
||||
block of random :code:`int32`.
|
||||
|
||||
If you need multiple streams of random numbers,
|
||||
using `randint4x` is likely to be faster than calling `randint` 4 times.
|
||||
|
||||
:param seed: The seed for generating random numbers.
|
||||
:param offsets: The offsets to generate random numbers for.
|
||||
Numerically stable function to convert a random integer into a random float uniformly sampled in [0, 1).
|
||||
This is originally designed from uint32, but it works with int32 too as long as the int32 uniformly
|
||||
covers all the possible values it can take.
|
||||
"""
|
||||
ret, _, _, _ = randint4x(seed, offset)
|
||||
return ret
|
||||
|
||||
max = 4.656613e-10 # = 1/MAX_INT = 1/2147483647.
|
||||
x = tl.where(x < 0, -x - 1, x)
|
||||
return x * max
|
||||
|
||||
@triton.jit
|
||||
def rand(seed, offset):
|
||||
def rand(seed, offset, n_rounds: tl.constexpr = N_ROUNDS_DEFAULT):
|
||||
"""
|
||||
Given a :code:`seed` scalar and an :code:`offset` block,
|
||||
returns a block of random :code:`float32` in :math:`U(0, 1)`
|
||||
@@ -142,28 +99,11 @@ def rand(seed, offset):
|
||||
:param seed: The seed for generating random numbers.
|
||||
:param offsets: The offsets to generate random numbers for.
|
||||
"""
|
||||
source = randint(seed, offset)
|
||||
source = randint(seed, offset, n_rounds)
|
||||
return uint32_to_uniform_float(source)
|
||||
|
||||
|
||||
@triton.jit
|
||||
def randn(seed, offset):
|
||||
"""
|
||||
Given a :code:`seed` scalar and an :code:`offset` block,
|
||||
returns a block of random :code:`float32` in :math:`\mathcal{N}(0, 1)`
|
||||
|
||||
:param seed: The seed for generating random numbers.
|
||||
:param offsets: The offsets to generate random numbers for.
|
||||
"""
|
||||
i1, i2, _, _ = randint4x(seed, offset)
|
||||
u1 = uint32_to_uniform_float(i1)
|
||||
u2 = uint32_to_uniform_float(i2)
|
||||
n1, _ = pair_uniform_to_normal(u1, u2)
|
||||
return n1
|
||||
|
||||
|
||||
@triton.jit
|
||||
def rand4x(seed, offsets):
|
||||
def rand4x(seed, offsets, n_rounds: tl.constexpr = N_ROUNDS_DEFAULT):
|
||||
"""
|
||||
Given a :code:`seed` scalar and an :code:`offsets` block,
|
||||
returns a 4 blocks of random :code:`float32` in :math:`U(0, 1)`
|
||||
@@ -171,16 +111,42 @@ def rand4x(seed, offsets):
|
||||
:param seed: The seed for generating random numbers.
|
||||
:param offsets: The offsets to generate random numbers for.
|
||||
"""
|
||||
i1, i2, i3, i4 = randint4x(seed, offsets)
|
||||
i1, i2, i3, i4 = randint4x(seed, offsets, n_rounds)
|
||||
u1 = uint32_to_uniform_float(i1)
|
||||
u2 = uint32_to_uniform_float(i2)
|
||||
u3 = uint32_to_uniform_float(i3)
|
||||
u4 = uint32_to_uniform_float(i4)
|
||||
return u1, u2, u3, u4
|
||||
|
||||
# -------------------
|
||||
# randn
|
||||
# -------------------
|
||||
|
||||
@triton.jit
|
||||
def randn4x(seed, offset):
|
||||
def pair_uniform_to_normal(u1, u2):
|
||||
"""Box-Muller transform"""
|
||||
u1 = tl.maximum(1.0e-7, u1)
|
||||
th = 6.283185307179586 * u2
|
||||
r = tl.sqrt(-2.0 * tl.log(u1))
|
||||
return r * tl.cos(th), r * tl.sin(th)
|
||||
|
||||
@triton.jit
|
||||
def randn(seed, offset, n_rounds: tl.constexpr = N_ROUNDS_DEFAULT):
|
||||
"""
|
||||
Given a :code:`seed` scalar and an :code:`offset` block,
|
||||
returns a block of random :code:`float32` in :math:`\mathcal{N}(0, 1)`
|
||||
|
||||
:param seed: The seed for generating random numbers.
|
||||
:param offsets: The offsets to generate random numbers for.
|
||||
"""
|
||||
i1, i2, _, _ = randint4x(seed, offset, n_rounds)
|
||||
u1 = uint32_to_uniform_float(i1)
|
||||
u2 = uint32_to_uniform_float(i2)
|
||||
n1, _ = pair_uniform_to_normal(u1, u2)
|
||||
return n1
|
||||
|
||||
@triton.jit
|
||||
def randn4x(seed, offset, n_rounds: tl.constexpr = N_ROUNDS_DEFAULT):
|
||||
"""
|
||||
Given a :code:`seed` scalar and an :code:`offset` block,
|
||||
returns a 4 blocks of random :code:`float32` in :math:`\mathcal{N}(0, 1)`
|
||||
@@ -188,7 +154,7 @@ def randn4x(seed, offset):
|
||||
:param seed: The seed for generating random numbers.
|
||||
:param offsets: The offsets to generate random numbers for.
|
||||
"""
|
||||
u1, u2, u3, u4 = rand4x(seed, offset)
|
||||
u1, u2, u3, u4 = rand4x(seed, offset, n_rounds)
|
||||
n1, n2 = pair_uniform_to_normal(u1, u2)
|
||||
n3, n4 = pair_uniform_to_normal(u3, u4)
|
||||
return n1, n2, n3, n4
|
||||
|
Reference in New Issue
Block a user