[DOCS] Switched tutorials to Python and use Sphinx Gallery

This commit is contained in:
Philippe Tillet
2021-03-06 14:03:01 -05:00
parent 5172792543
commit ca04da3575
9 changed files with 515 additions and 645 deletions

View File

@@ -0,0 +1,181 @@
"""
Fused Softmax
=================
"""
# %%
# Custom GPU kernels for elementwise additions are educationally valuable but won't get you very far in practice.
# Let us consider instead the case of a simple (numerically stabilized) softmax operation:
import torch
# Compute the row-wise softmax of x \in R^{M \times N}
def naive_softmax(x):
# read MN elements ; write M elements
x_max = torch.max(x, axis=1)[0]
# read 2MN elements ; write MN elements
z = x - x_max[:, None]
# read MN elements ; write MN elements
numerator = torch.exp(x)
# read MN elements ; write M elements
denominator = torch.sum(numerator, axis=1)
# read 2MN elements ; write MN elements
ret = numerator / denominator[:, None]
# in total: read 7MN elements ; wrote 3MN + 2M elements
return ret
# %%
# When implemented naively in pytorch, computing :math:`y` requires reading :math:`7MN` elements from DRAM and writing back :math:`3MN + 2M` elements.
# Instead, we want to write a custom "fused" pytorch operators that only reads X once and does all the necessary computations on-chip. This would require reading and writing back only :math:`MN` bytes, so we could expect a theoretical speed-up of 5x. In practice, though, we expect less because our kernel will spend some time computing exponentials and moving data around in shared memory.
# %%
# Writing the Compute Kernel
# ----------------------------
# Our softmax kernel works as follows: each program loads a row of X and writes back a normalized row of Y. Note that one important limitation of Triton is that each block must have a power-of-two number of elements, which means that we need to guard the memory operations properly if we want to handle any possible input shapes:
#
# .. code-block:: C
#
# __global__ void softmax(float* Y, float* X, int stride_xm, int stride_ym, int M, int N){
# // row index
# int m = get_program_id(0);
# // column indices
# int n [BLOCK] = 0 ... BLOCK;
# // the memory address of all the elements
# // that we want to load can be computed as follows
# float* px [BLOCK] = X + m*stride_xm + n;
# // because BLOCK has to be a power of two
# // (per Triton-C specs), it is important
# // to guard each memory operation with predicates
# // or we will read out of bounds
# bool check[BLOCK] = n < N;
# float x [BLOCK] = check ? *px : -F32_INFINITY;
# // syntax for reduction in Triton is:
# // x[..., OPERATOR, ...]
# // ^
# // index
# // The operators currently supported are {min, max, +}
# float z [BLOCK] = x - x[max];
# // The exponential in Triton is fast but approximate
# // (i.e., like __expf in CUDA)
# float num [BLOCK] = exp(z);
# float denom = num[+];
# // The result of the reduction is now stored in y
# float y [BLOCK] = num / denom;
# // We write it back
# float* py [BLOCK] = Y + m*stride_ym + n;
# *?(check)py = y;
# }
# %%
# Writing the Compute Kernel
# ----------------------------
import torch
import triton
# %%
# source-code for Triton compute kernel
_src = """
__global__ void softmax(float* Y, float* X, int stride_ym, int stride_xm, int M, int N){
int m = get_program_id(0);
int n [BLOCK] = 0 ... BLOCK;
float* px [BLOCK] = X + m*stride_xm + n;
bool check[BLOCK] = n < N;
float x [BLOCK] = check ? *px : -F32_INFINITY;
float z [BLOCK] = x - x[max];
float num [BLOCK] = exp(z);
float denom = num[+];
float y [BLOCK] = num / denom;
float* py [BLOCK] = Y + m*stride_ym + n;
*?(check)py = y;
}
"""
# %%
# Writing the Torch bindings
# ----------------------------
# We need to make sure that BLOCK is the smallest power of two
# greater than the number of rows N of the input matrix.
# Different values of BLOCK will result in different kernels
def next_power_of_2(n):
n -= 1
n |= n >> 1
n |= n >> 2
n |= n >> 4
n |= n >> 8
n |= n >> 16
n += 1
return n
_kernels = dict()
def make_kernel(N, device):
BLOCK = next_power_of_2(N)
key = (BLOCK, device)
if key not in _kernels:
defines = {'BLOCK': BLOCK}
_kernels[key] = triton.kernel(_src, device=device, defines=defines)
return _kernels[key]
class _softmax(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
# constraints of the op
assert x.dtype == torch.float32
y = torch.empty_like(x)
# *create launch grid*:
# here we just launch a grid of M programs
M, N = y.shape
grid = lambda opt: (M, )
# *launch kernel*:
kernel = make_kernel(N, y.device)
kernel(y.data_ptr(), x.data_ptr(), y.stride(0), x.stride(0), M, N, grid=grid)
return y
softmax = _softmax.apply
# %%
# Unit Test
# ----------
x = torch.randn(1823, 781, device='cuda')
y_tri = softmax(x)
y_ref = torch.softmax(x, axis=1)
print(y_tri)
print(y_ref)
print(torch.allclose(y_tri, y_ref))
# %%
# Seems to work!
# %%
# Benchmark
# ----------
import matplotlib.pyplot as plt
M = 4096
Ns = [128 * i for i in range(2, 50)]
tri_ms = []
ref_ms = []
def_ms = []
for N in Ns:
x = torch.randn(M, N, device='cuda', dtype=torch.float32)
gbps = lambda ms: x.nelement() * x.element_size() * 1e-9 / (ms * 1e-3)
tri_ms += [gbps(triton.testing.do_bench(lambda: softmax(x)))]
ref_ms += [gbps(triton.testing.do_bench(lambda: torch.softmax(x, axis=1)))]
def_ms += [gbps(triton.testing.do_bench(lambda: naive_softmax(x)))]
plt.xlabel('N')
plt.ylabel('Bandwidth (GB/s)')
plt.plot(Ns, tri_ms, label='Triton')
plt.plot(Ns, ref_ms, label='Torch')
plt.plot(Ns, def_ms, label='Naive')
plt.legend()
plt.show()