[DOCS] Switched tutorials to Python and use Sphinx Gallery
This commit is contained in:
181
python/tutorials/02-fused-softmax.py
Normal file
181
python/tutorials/02-fused-softmax.py
Normal file
@@ -0,0 +1,181 @@
|
||||
"""
|
||||
Fused Softmax
|
||||
=================
|
||||
"""
|
||||
|
||||
# %%
|
||||
# Custom GPU kernels for elementwise additions are educationally valuable but won't get you very far in practice.
|
||||
# Let us consider instead the case of a simple (numerically stabilized) softmax operation:
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
# Compute the row-wise softmax of x \in R^{M \times N}
|
||||
def naive_softmax(x):
|
||||
# read MN elements ; write M elements
|
||||
x_max = torch.max(x, axis=1)[0]
|
||||
# read 2MN elements ; write MN elements
|
||||
z = x - x_max[:, None]
|
||||
# read MN elements ; write MN elements
|
||||
numerator = torch.exp(x)
|
||||
# read MN elements ; write M elements
|
||||
denominator = torch.sum(numerator, axis=1)
|
||||
# read 2MN elements ; write MN elements
|
||||
ret = numerator / denominator[:, None]
|
||||
# in total: read 7MN elements ; wrote 3MN + 2M elements
|
||||
return ret
|
||||
|
||||
|
||||
# %%
|
||||
# When implemented naively in pytorch, computing :math:`y` requires reading :math:`7MN` elements from DRAM and writing back :math:`3MN + 2M` elements.
|
||||
# Instead, we want to write a custom "fused" pytorch operators that only reads X once and does all the necessary computations on-chip. This would require reading and writing back only :math:`MN` bytes, so we could expect a theoretical speed-up of 5x. In practice, though, we expect less because our kernel will spend some time computing exponentials and moving data around in shared memory.
|
||||
|
||||
# %%
|
||||
# Writing the Compute Kernel
|
||||
# ----------------------------
|
||||
# Our softmax kernel works as follows: each program loads a row of X and writes back a normalized row of Y. Note that one important limitation of Triton is that each block must have a power-of-two number of elements, which means that we need to guard the memory operations properly if we want to handle any possible input shapes:
|
||||
#
|
||||
# .. code-block:: C
|
||||
#
|
||||
# __global__ void softmax(float* Y, float* X, int stride_xm, int stride_ym, int M, int N){
|
||||
# // row index
|
||||
# int m = get_program_id(0);
|
||||
# // column indices
|
||||
# int n [BLOCK] = 0 ... BLOCK;
|
||||
# // the memory address of all the elements
|
||||
# // that we want to load can be computed as follows
|
||||
# float* px [BLOCK] = X + m*stride_xm + n;
|
||||
# // because BLOCK has to be a power of two
|
||||
# // (per Triton-C specs), it is important
|
||||
# // to guard each memory operation with predicates
|
||||
# // or we will read out of bounds
|
||||
# bool check[BLOCK] = n < N;
|
||||
# float x [BLOCK] = check ? *px : -F32_INFINITY;
|
||||
# // syntax for reduction in Triton is:
|
||||
# // x[..., OPERATOR, ...]
|
||||
# // ^
|
||||
# // index
|
||||
# // The operators currently supported are {min, max, +}
|
||||
# float z [BLOCK] = x - x[max];
|
||||
# // The exponential in Triton is fast but approximate
|
||||
# // (i.e., like __expf in CUDA)
|
||||
# float num [BLOCK] = exp(z);
|
||||
# float denom = num[+];
|
||||
# // The result of the reduction is now stored in y
|
||||
# float y [BLOCK] = num / denom;
|
||||
# // We write it back
|
||||
# float* py [BLOCK] = Y + m*stride_ym + n;
|
||||
# *?(check)py = y;
|
||||
# }
|
||||
|
||||
# %%
|
||||
# Writing the Compute Kernel
|
||||
# ----------------------------
|
||||
|
||||
import torch
|
||||
import triton
|
||||
|
||||
# %%
|
||||
# source-code for Triton compute kernel
|
||||
_src = """
|
||||
__global__ void softmax(float* Y, float* X, int stride_ym, int stride_xm, int M, int N){
|
||||
int m = get_program_id(0);
|
||||
int n [BLOCK] = 0 ... BLOCK;
|
||||
float* px [BLOCK] = X + m*stride_xm + n;
|
||||
bool check[BLOCK] = n < N;
|
||||
float x [BLOCK] = check ? *px : -F32_INFINITY;
|
||||
float z [BLOCK] = x - x[max];
|
||||
float num [BLOCK] = exp(z);
|
||||
float denom = num[+];
|
||||
float y [BLOCK] = num / denom;
|
||||
float* py [BLOCK] = Y + m*stride_ym + n;
|
||||
*?(check)py = y;
|
||||
}
|
||||
"""
|
||||
|
||||
|
||||
# %%
|
||||
# Writing the Torch bindings
|
||||
# ----------------------------
|
||||
# We need to make sure that BLOCK is the smallest power of two
|
||||
# greater than the number of rows N of the input matrix.
|
||||
# Different values of BLOCK will result in different kernels
|
||||
def next_power_of_2(n):
|
||||
n -= 1
|
||||
n |= n >> 1
|
||||
n |= n >> 2
|
||||
n |= n >> 4
|
||||
n |= n >> 8
|
||||
n |= n >> 16
|
||||
n += 1
|
||||
return n
|
||||
|
||||
|
||||
_kernels = dict()
|
||||
|
||||
|
||||
def make_kernel(N, device):
|
||||
BLOCK = next_power_of_2(N)
|
||||
key = (BLOCK, device)
|
||||
if key not in _kernels:
|
||||
defines = {'BLOCK': BLOCK}
|
||||
_kernels[key] = triton.kernel(_src, device=device, defines=defines)
|
||||
return _kernels[key]
|
||||
|
||||
|
||||
class _softmax(torch.autograd.Function):
|
||||
@staticmethod
|
||||
def forward(ctx, x):
|
||||
# constraints of the op
|
||||
assert x.dtype == torch.float32
|
||||
y = torch.empty_like(x)
|
||||
# *create launch grid*:
|
||||
# here we just launch a grid of M programs
|
||||
M, N = y.shape
|
||||
grid = lambda opt: (M, )
|
||||
# *launch kernel*:
|
||||
kernel = make_kernel(N, y.device)
|
||||
kernel(y.data_ptr(), x.data_ptr(), y.stride(0), x.stride(0), M, N, grid=grid)
|
||||
return y
|
||||
|
||||
|
||||
softmax = _softmax.apply
|
||||
|
||||
# %%
|
||||
# Unit Test
|
||||
# ----------
|
||||
|
||||
x = torch.randn(1823, 781, device='cuda')
|
||||
y_tri = softmax(x)
|
||||
y_ref = torch.softmax(x, axis=1)
|
||||
print(y_tri)
|
||||
print(y_ref)
|
||||
print(torch.allclose(y_tri, y_ref))
|
||||
|
||||
# %%
|
||||
# Seems to work!
|
||||
|
||||
# %%
|
||||
# Benchmark
|
||||
# ----------
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
M = 4096
|
||||
Ns = [128 * i for i in range(2, 50)]
|
||||
tri_ms = []
|
||||
ref_ms = []
|
||||
def_ms = []
|
||||
for N in Ns:
|
||||
x = torch.randn(M, N, device='cuda', dtype=torch.float32)
|
||||
gbps = lambda ms: x.nelement() * x.element_size() * 1e-9 / (ms * 1e-3)
|
||||
tri_ms += [gbps(triton.testing.do_bench(lambda: softmax(x)))]
|
||||
ref_ms += [gbps(triton.testing.do_bench(lambda: torch.softmax(x, axis=1)))]
|
||||
def_ms += [gbps(triton.testing.do_bench(lambda: naive_softmax(x)))]
|
||||
plt.xlabel('N')
|
||||
plt.ylabel('Bandwidth (GB/s)')
|
||||
plt.plot(Ns, tri_ms, label='Triton')
|
||||
plt.plot(Ns, ref_ms, label='Torch')
|
||||
plt.plot(Ns, def_ms, label='Naive')
|
||||
plt.legend()
|
||||
plt.show()
|
Reference in New Issue
Block a user