[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2022-08-11 00:50:19 +00:00
parent 4b51054036
commit ca12a57c3b
168 changed files with 289 additions and 289 deletions

View File

@@ -330,19 +330,19 @@ for different problem sizes.</p>
3 32768.0 76.800002 76.800002
4 65536.0 127.999995 127.999995
5 131072.0 219.428568 219.428568
6 262144.0 341.333321 384.000001
6 262144.0 384.000001 384.000001
7 524288.0 472.615390 472.615390
8 1048576.0 614.400016 614.400016
9 2097152.0 722.823517 722.823517
10 4194304.0 780.190482 780.190482
11 8388608.0 812.429770 812.429770
12 16777216.0 833.084721 833.084721
13 33554432.0 842.004273 843.811163
13 33554432.0 842.004273 842.004273
14 67108864.0 847.448255 848.362445
15 134217728.0 849.737435 850.656574
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 48.722 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 46.910 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>

View File

@@ -371,17 +371,17 @@ We will then compare its performance against (1) <code class="code docutils lite
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 512.000001 546.133347 186.181817
0 256.0 546.133347 546.133347 188.321838
1 384.0 614.400016 585.142862 153.600004
2 512.0 655.360017 585.142849 154.566038
3 640.0 706.206879 640.000002 160.000000
4 768.0 722.823517 664.216187 163.839992
2 512.0 655.360017 606.814814 154.566038
3 640.0 706.206879 640.000002 158.759699
4 768.0 722.823517 664.216187 162.754967
.. ... ... ... ...
93 12160.0 812.359066 405.755985 198.936606
94 12288.0 812.429770 415.661740 199.197579
95 12416.0 812.498981 411.722274 198.755369
96 12544.0 810.925276 412.971190 199.012395
97 12672.0 811.007961 412.097543 199.069228
93 12160.0 812.359066 406.603966 198.530610
94 12288.0 812.429770 415.881552 198.794749
95 12416.0 812.498981 412.149375 198.457532
96 12544.0 810.925276 412.546756 198.716830
97 12672.0 811.007961 412.097543 198.776477
[98 rows x 4 columns]
</pre></div>
@@ -394,7 +394,7 @@ We will then compare its performance against (1) <code class="code docutils lite
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 32.036 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 31.136 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>

View File

@@ -567,42 +567,42 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 256.0 2.730667 ... 2.978909 3.276800
1 384.0 7.372800 ... 8.507077 8.507077
2 512.0 14.563555 ... 16.384000 15.420235
0 256.0 2.730667 ... 3.276800 3.276800
1 384.0 7.372800 ... 7.899428 7.899428
2 512.0 14.563555 ... 15.420235 15.420235
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 32.768000 ... 35.389441 34.028308
5 896.0 37.971025 ... 40.140799 39.025776
6 1024.0 49.932191 ... 53.773130 53.092457
7 1152.0 45.242181 ... 48.161033 48.161033
5 896.0 39.025776 ... 40.140799 39.025776
6 1024.0 51.150050 ... 53.773130 52.428801
7 1152.0 45.242181 ... 48.161033 47.396572
8 1280.0 51.200001 ... 57.690139 57.690139
9 1408.0 64.138541 ... 69.009825 67.305878
10 1536.0 80.430545 ... 81.355034 79.526831
10 1536.0 80.430545 ... 80.430545 78.643199
11 1664.0 62.929456 ... 63.372618 62.492442
12 1792.0 72.512412 ... 73.460287 59.467852
13 1920.0 69.120002 ... 71.626943 71.257735
14 2048.0 73.908442 ... 78.398206 77.314362
15 2176.0 83.500614 ... 87.876193 85.998493
16 2304.0 68.446623 ... 78.064941 77.057651
17 2432.0 71.305746 ... 85.393507 75.522751
18 2560.0 77.833728 ... 82.125311 80.908642
19 2688.0 83.922689 ... 90.966561 89.464755
20 2816.0 81.067298 ... 84.360174 83.873477
21 2944.0 81.967162 ... 83.337844 81.832567
22 3072.0 82.420822 ... 89.310890 88.473602
23 3200.0 83.879425 ... 95.238096 87.671229
24 3328.0 82.369902 ... 85.602017 81.994643
25 3456.0 80.864158 ... 84.332184 90.281712
26 3584.0 87.127323 ... 97.947050 97.205829
27 3712.0 84.159518 ... 89.035062 87.552452
28 3840.0 81.138664 ... 86.332554 90.279183
29 3968.0 87.913500 ... 91.954739 86.358055
30 4096.0 93.271527 ... 84.254693 82.418802
13 1920.0 69.120002 ... 71.257735 71.257735
14 2048.0 73.908442 ... 78.033565 77.314362
15 2176.0 83.500614 ... 87.494120 86.367588
16 2304.0 68.446623 ... 77.810656 77.307030
17 2432.0 71.305746 ... 85.915795 85.653855
18 2560.0 77.833728 ... 82.331658 81.108913
19 2688.0 83.552988 ... 90.966561 89.888756
20 2816.0 80.026067 ... 84.197315 83.712490
21 2944.0 82.102191 ... 83.617504 82.509987
22 3072.0 81.825298 ... 89.451983 88.197981
23 3200.0 84.432717 ... 96.822991 95.808380
24 3328.0 83.226931 ... 85.398926 84.795401
25 3456.0 81.932484 ... 91.928814 88.400840
26 3584.0 86.540320 ... 98.375705 97.311031
27 3712.0 84.159518 ... 89.273764 86.118401
28 3840.0 84.132370 ... 93.012618 85.863352
29 3968.0 91.747320 ... 85.004484 87.881842
30 4096.0 92.820009 ... 91.804194 87.381330
[31 rows x 5 columns]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 7 minutes 19.813 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 7 minutes 5.808 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>

View File

@@ -374,7 +374,7 @@ to explore the <cite>triton/language/random</cite> folder!</p>
<dd><p>Nitish Srivastava and Geoffrey Hinton and Alex Krizhevsky and Ilya Sutskever and Ruslan Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, JMLR 2014</p>
</dd>
</dl>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.281 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.285 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-04-low-memory-dropout-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/c9aed78977a4c05741d675a38dde3d7d/04-low-memory-dropout.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">04-low-memory-dropout.py</span></code></a></p>

View File

@@ -196,36 +196,36 @@ to download the full example code</p>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>layer-norm:
N Triton Torch Apex
0 1024.0 606.814814 277.694907 468.114273
0 1024.0 585.142849 277.694907 481.882344
1 1536.0 630.153868 323.368435 511.999982
2 2048.0 682.666643 337.814445 520.126988
3 2560.0 694.237267 362.477870 512.000013
4 3072.0 712.347810 378.092307 506.721668
5 3584.0 725.873439 384.859062 455.111115
6 4096.0 728.177767 381.023256 451.972420
7 4608.0 670.254540 396.387087 431.157877
8 5120.0 688.403381 397.669909 422.268057
9 5632.0 704.000002 395.228063 415.262685
10 6144.0 702.171410 402.885254 409.600010
2 2048.0 668.734716 334.367358 520.126988
3 2560.0 694.237267 365.714281 518.481028
4 3072.0 712.347810 378.092307 501.551037
5 3584.0 725.873439 384.859062 458.751978
6 4096.0 728.177767 381.023256 458.293714
7 4608.0 670.254540 396.387087 426.173427
8 5120.0 688.403381 397.669909 426.666652
9 5632.0 698.542675 395.228063 413.357796
10 6144.0 697.191505 402.885254 411.313806
11 6656.0 700.631610 400.360920 400.360920
12 7168.0 690.891575 392.767108 382.293315
13 7680.0 678.895043 393.846167 386.415087
14 8192.0 633.198054 394.795186 376.643677
15 8704.0 624.502255 389.005597 379.465939
16 9216.0 606.814809 406.214877 382.010363
17 9728.0 587.350922 408.524944 383.369452
18 10240.0 564.965524 409.600010 382.803739
19 10752.0 546.133312 411.559798 380.601764
20 11264.0 532.419472 404.089694 371.595879
12 7168.0 686.754468 396.844306 387.459443
13 7680.0 682.666656 392.587863 387.634072
14 8192.0 633.198054 393.609605 371.308771
15 8704.0 627.315309 389.005597 380.502740
16 9216.0 606.814809 407.337026 383.999986
17 9728.0 587.350922 409.599987 383.369452
18 10240.0 564.965524 408.578556 382.803739
19 10752.0 546.133312 411.559798 381.445676
20 11264.0 533.207081 406.826188 373.134567
21 11776.0 520.486200 409.599991 377.587162
22 12288.0 513.336807 413.911572 383.251457
23 12800.0 504.433489 409.599981 377.163903
24 13312.0 494.180982 406.473303 377.645399
25 13824.0 482.934503 412.656711 379.389355
26 14336.0 471.967074 402.414053 370.558967
27 14848.0 461.297068 406.794504 373.534584
28 15360.0 454.269882 406.214870 377.511515
29 15872.0 447.098578 407.627589 376.225175
22 12288.0 514.680630 414.784810 383.251457
23 12800.0 504.433489 410.420828 376.470582
24 13312.0 494.180982 405.699062 376.310952
25 13824.0 481.882350 411.888257 379.389355
26 14336.0 471.967074 406.695045 374.185964
27 14848.0 461.297068 408.192434 375.304904
28 15360.0 454.269882 406.214870 378.092307
29 15872.0 447.887117 406.974373 376.225175
</pre></div>
</div>
<div class="line-block">
@@ -543,7 +543,7 @@ to download the full example code</p>
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 37.451 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 31.020 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>

View File

@@ -543,7 +543,7 @@ to download the full example code</p>
<span class="c1"># bench_flash_attention.run(save_path=&#39;.&#39;, print_data=True)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.073 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.072 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-06-fused-attention-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/54a35f6ec55f9746935b9566fb6bb1df/06-fused-attention.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">06-fused-attention.py</span></code></a></p>

View File

@@ -276,7 +276,7 @@ tensor([0.4105, 0.5430, 0.0249, ..., 0.0424, 0.5351, 0.8149], device=&#39;cuda:
The maximum difference between torch and triton is 2.384185791015625e-07
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.254 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.264 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-07-libdevice-function-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/3ff29f967ace7985da24aab10352fc76/07-libdevice-function.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">07-libdevice-function.py</span></code></a></p>

View File

@@ -174,7 +174,7 @@
<div class="section" id="computation-times">
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline"></a></h1>
<p><strong>18:18.630</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<p><strong>17:55.494</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 85%" />
@@ -183,31 +183,31 @@
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
<td><p>07:19.813</p></td>
<td><p>07:05.808</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">Layer Normalization</span></a> (<code class="docutils literal notranslate"><span class="pre">05-layer-norm.py</span></code>)</p></td>
<td><p>05:37.451</p></td>
<td><p>05:31.020</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
<td><p>03:32.036</p></td>
<td><p>03:31.136</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
<td><p>01:48.722</p></td>
<td><p>01:46.910</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>
<td><p>00:00.281</p></td>
<td><p>00:00.285</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="07-libdevice-function.html#sphx-glr-getting-started-tutorials-07-libdevice-function-py"><span class="std std-ref">Libdevice function</span></a> (<code class="docutils literal notranslate"><span class="pre">07-libdevice-function.py</span></code>)</p></td>
<td><p>00:00.254</p></td>
<td><p>00:00.264</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="06-fused-attention.html#sphx-glr-getting-started-tutorials-06-fused-attention-py"><span class="std std-ref">Fused Attention</span></a> (<code class="docutils literal notranslate"><span class="pre">06-fused-attention.py</span></code>)</p></td>
<td><p>00:00.073</p></td>
<td><p>00:00.072</p></td>
<td><p>0.0 MB</p></td>
</tr>
</tbody>