[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2022-08-11 00:50:19 +00:00
parent 4b51054036
commit ca12a57c3b
168 changed files with 289 additions and 289 deletions

View File

@@ -324,22 +324,22 @@ for different problem sizes.</p>
0 4096.0 9.600000 9.600000
1 8192.0 19.200000 19.200000
2 16384.0 38.400001 38.400001
3 32768.0 63.999998 76.800002
3 32768.0 76.800002 76.800002
4 65536.0 127.999995 127.999995
5 131072.0 219.428568 219.428568
6 262144.0 341.333321 384.000001
6 262144.0 384.000001 384.000001
7 524288.0 472.615390 472.615390
8 1048576.0 614.400016 614.400016
9 2097152.0 722.823517 722.823517
10 4194304.0 780.190482 780.190482
11 8388608.0 812.429770 812.429770
12 16777216.0 833.084721 833.084721
13 33554432.0 842.004273 842.004273
13 33554432.0 842.004273 843.811163
14 67108864.0 847.448255 848.362445
15 134217728.0 849.737435 850.656574
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 41.509 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 40.240 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>

View File

@@ -374,17 +374,17 @@ We will then compare its performance against (1) <code class="code docutils lite
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 512.000001 546.133347 190.511628
0 256.0 512.000001 546.133347 188.321838
1 384.0 614.400016 585.142862 153.600004
2 512.0 655.360017 606.814814 154.566038
3 640.0 682.666684 640.000002 160.000000
4 768.0 722.823517 664.216187 162.754967
.. ... ... ... ...
93 12160.0 814.058574 406.179533 199.038365
94 12288.0 814.111783 415.661740 199.298541
95 12416.0 812.498981 412.149375 198.954424
96 12544.0 812.566838 412.971190 199.209928
97 12672.0 812.633240 412.097543 199.264875
93 12160.0 814.058574 406.179533 198.631953
94 12288.0 814.111783 415.661740 198.794749
95 12416.0 812.498981 412.149375 198.457532
96 12544.0 812.566838 412.546756 198.716830
97 12672.0 812.633240 412.097543 198.873965
[98 rows x 4 columns]
</pre></div>
@@ -397,7 +397,7 @@ We will then compare its performance against (1) <code class="code docutils lite
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 23.180 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 22.452 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>

View File

@@ -568,42 +568,42 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 256.0 2.730667 ... 3.276800 2.978909
1 384.0 7.372800 ... 8.507077 8.507077
0 256.0 2.978909 ... 3.276800 3.276800
1 384.0 7.372800 ... 7.899428 7.899428
2 512.0 14.563555 ... 16.384000 16.384000
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 32.768000 ... 34.028308 34.028308
5 896.0 39.025776 ... 39.025776 39.025776
6 1024.0 51.150050 ... 53.773130 52.428801
7 1152.0 45.242181 ... 46.656000 46.656000
8 1280.0 51.200001 ... 56.888887 56.109587
9 1408.0 64.138541 ... 67.305878 66.485074
10 1536.0 80.430545 ... 79.526831 78.643199
11 1664.0 62.929456 ... 62.061463 62.061463
12 1792.0 72.512412 ... 72.047592 71.588687
13 1920.0 68.776119 ... 70.172588 70.172588
14 2048.0 73.908442 ... 76.959706 76.959706
15 2176.0 83.500614 ... 86.367588 85.632545
8 1280.0 51.200001 ... 56.888887 56.888887
9 1408.0 64.138541 ... 67.305878 67.305878
10 1536.0 80.430545 ... 79.526831 79.526831
11 1664.0 63.372618 ... 62.492442 62.061463
12 1792.0 72.983276 ... 72.047592 71.588687
13 1920.0 69.120002 ... 70.172588 70.530615
14 2048.0 73.908442 ... 77.314362 76.959706
15 2176.0 83.500614 ... 85.998493 85.269692
16 2304.0 68.251065 ... 76.809875 76.563695
17 2432.0 71.305746 ... 85.393507 84.367759
18 2560.0 77.833728 ... 81.310171 80.908642
19 2688.0 83.369354 ... 88.836198 89.464755
20 2816.0 79.733474 ... 83.552120 82.602666
21 2944.0 82.237674 ... 83.060049 81.298583
22 3072.0 79.638683 ... 88.473602 87.924073
23 3200.0 84.656085 ... 95.665176 95.238096
24 3328.0 84.003845 ... 84.695641 83.516586
25 3456.0 81.849303 ... 84.508982 88.790274
26 3584.0 86.958797 ... 98.591437 94.548254
27 3712.0 85.019017 ... 85.748791 86.716441
28 3840.0 85.005380 ... 86.164395 88.615388
29 3968.0 92.793868 ... 85.093402 90.926929
30 4096.0 88.592559 ... 86.480498 93.045216
17 2432.0 71.305746 ... 85.134737 84.877538
18 2560.0 78.019048 ... 81.310171 80.511054
19 2688.0 83.737433 ... 89.254248 89.888756
20 2816.0 81.218262 ... 83.552120 82.759409
21 2944.0 82.237674 ... 79.865439 82.921853
22 3072.0 81.825298 ... 88.542777 86.579673
23 3200.0 79.701121 ... 91.822093 92.352095
24 3328.0 80.707733 ... 84.895397 84.596116
25 3456.0 82.099354 ... 91.304157 85.585527
26 3584.0 85.633710 ... 91.610178 95.502274
27 3712.0 84.372753 ... 87.170458 86.716441
28 3840.0 84.292684 ... 91.853823 85.399230
29 3968.0 92.372393 ... 89.068569 84.915752
30 4096.0 91.553703 ... 83.468735 86.844210
[31 rows x 5 columns]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 22.058 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 24.923 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>

View File

@@ -371,7 +371,7 @@ to explore the <cite>triton/language/random</cite> folder!</p>
<dd><p>Nitish Srivastava and Geoffrey Hinton and Alex Krizhevsky and Ilya Sutskever and Ruslan Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, JMLR 2014</p>
</dd>
</dl>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.011 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.012 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-04-low-memory-dropout-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/c9aed78977a4c05741d675a38dde3d7d/04-low-memory-dropout.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">04-low-memory-dropout.py</span></code></a></p>

View File

@@ -194,34 +194,34 @@ to download the full example code</p>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>layer-norm-backward:
N Triton Torch Apex
0 1024.0 311.088617 99.096776 307.200008
1 1536.0 351.085717 133.083026 338.201833
0 1024.0 311.088617 99.497980 311.088617
1 1536.0 351.085717 133.083026 341.333333
2 2048.0 423.724127 162.217818 336.657521
3 2560.0 461.954908 182.857144 330.322572
3 2560.0 465.454542 182.857144 330.322572
4 3072.0 515.580429 191.501303 320.556515
5 3584.0 554.941930 208.271186 308.301075
5 3584.0 554.941930 208.271186 309.410081
6 4096.0 568.231237 220.412561 297.890900
7 4608.0 498.162157 231.849059 287.251954
8 5120.0 525.128191 242.845844 283.787523
9 5632.0 538.517949 243.545956 290.683877
10 6144.0 544.118087 248.661056 285.767458
11 6656.0 527.207907 256.000009 286.793541
12 7168.0 507.469040 261.844750 288.644296
13 7680.0 482.513091 260.707203 277.590365
8 5120.0 527.381977 242.845844 283.787523
9 5632.0 538.517949 243.545956 291.310338
10 6144.0 544.118087 248.661056 286.879370
11 6656.0 527.207907 256.000009 286.279570
12 7168.0 507.469040 262.243907 288.644296
13 7680.0 482.513091 260.707203 277.172933
14 8192.0 460.440290 268.957600 286.600589
15 8704.0 416.958106 267.815384 284.987724
15 8704.0 416.958106 267.815384 285.377055
16 9216.0 428.651187 273.066667 289.507855
17 9728.0 438.857162 280.278512 288.950501
18 10240.0 447.650282 286.767793 290.840246
17 9728.0 439.683593 280.615388 288.950501
18 10240.0 447.650282 286.767793 290.153487
19 10752.0 430.079980 246.464170 290.267711
20 11264.0 429.786952 245.091565 285.767446
21 11776.0 421.198220 249.227509 288.686414
22 12288.0 420.102570 254.453844 295.207195
23 12800.0 415.696898 253.465340 288.721817
24 13312.0 412.242569 252.759501 290.179836
25 13824.0 405.098897 257.390218 292.571423
26 14336.0 397.761846 254.673567 286.481278
27 14848.0 383.999990 257.293872 289.246765
21 11776.0 421.826879 249.227509 288.686414
22 12288.0 420.102570 254.673582 295.207195
23 12800.0 415.696898 253.465340 288.180121
24 13312.0 412.242569 252.959629 290.179836
25 13824.0 405.098897 257.390218 292.829653
26 14336.0 398.222222 254.862216 286.481278
27 14848.0 384.414233 257.108233 289.246765
28 15360.0 374.634130 257.790220 287.775181
29 15872.0 366.982663 262.890274 291.229369
</pre></div>
@@ -477,7 +477,7 @@ to download the full example code</p>
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 10.833 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 9.732 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>

View File

@@ -174,7 +174,7 @@
<div class="section" id="computation-times">
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline"></a></h1>
<p><strong>12:37.591</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<p><strong>12:37.359</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 85%" />
@@ -183,23 +183,23 @@
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
<td><p>05:22.058</p></td>
<td><p>05:24.923</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
<td><p>03:23.180</p></td>
<td><p>03:22.452</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">Layer Normalization</span></a> (<code class="docutils literal notranslate"><span class="pre">05-layer-norm.py</span></code>)</p></td>
<td><p>02:10.833</p></td>
<td><p>02:09.732</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
<td><p>01:41.509</p></td>
<td><p>01:40.240</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>
<td><p>00:00.011</p></td>
<td><p>00:00.012</p></td>
<td><p>0.0 MB</p></td>
</tr>
</tbody>