Squashed feature branch:
* Added CUDA support * Performance improvements * API improvements * Added "depth" parameter to GEMM * Android cross-compilation
This commit is contained in:
@@ -2,7 +2,7 @@ import random, time, sys, copy
|
||||
import misc_tools
|
||||
|
||||
import numpy as np
|
||||
import pyatidlas as atd
|
||||
import pyisaac as atd
|
||||
from deap import algorithms
|
||||
from deap import base
|
||||
from deap import creator
|
||||
@@ -30,6 +30,14 @@ def b_gray_to_bin(A='00000000', endian='big'):
|
||||
|
||||
class GeneticOperators(object):
|
||||
|
||||
class Pow2(object):
|
||||
def __init__(self, v):
|
||||
self.value = v
|
||||
|
||||
@property
|
||||
def decoded():
|
||||
return 2**self.value
|
||||
|
||||
def __init__(self, symbolic, Template, out):
|
||||
self.device = symbolic.context.queues[0].device
|
||||
self.symbolic = symbolic
|
||||
@@ -39,15 +47,15 @@ class GeneticOperators(object):
|
||||
|
||||
|
||||
self.genome_info = {
|
||||
atd.vaxpy: [3,4,4,atd.fetching_policy_type],
|
||||
atd.reduction: [3,4,4,atd.fetching_policy_type],
|
||||
atd.maxpy: [3,3,3,3,3,atd.fetching_policy_type],
|
||||
atd.mreduction_rows: [3,3,3,3,3,atd.fetching_policy_type],
|
||||
atd.mreduction_cols: [3,3,3,3,3,atd.fetching_policy_type],
|
||||
atd.mproduct_nn: [3,3,3,3,3,3,3,atd.fetching_policy_type,atd.fetching_policy_type,3],
|
||||
atd.mproduct_nt: [3,3,3,3,3,3,3,atd.fetching_policy_type,atd.fetching_policy_type,3],
|
||||
atd.mproduct_tn: [3,3,3,3,3,3,3,atd.fetching_policy_type,atd.fetching_policy_type,3],
|
||||
atd.mproduct_tt: [3,3,3,3,3,3,3,atd.fetching_policy_type,atd.fetching_policy_type,3]
|
||||
atd.vaxpy: [2,4,4,atd.fetching_policy_type],
|
||||
atd.reduction: [2,4,4,atd.fetching_policy_type],
|
||||
atd.maxpy: [2,3,3,3,3,atd.fetching_policy_type],
|
||||
atd.mreduction_rows: [2,3,3,3,3,atd.fetching_policy_type],
|
||||
atd.mreduction_cols: [2,3,3,3,3,atd.fetching_policy_type],
|
||||
atd.mproduct_nn: [2,3,3,3,3,3,3,3,atd.fetching_policy_type,atd.fetching_policy_type,3],
|
||||
atd.mproduct_nt: [2,3,3,3,3,3,3,3,atd.fetching_policy_type,atd.fetching_policy_type,3],
|
||||
atd.mproduct_tn: [2,3,3,3,3,3,3,3,atd.fetching_policy_type,atd.fetching_policy_type,3],
|
||||
atd.mproduct_tt: [2,3,3,3,3,3,3,3,atd.fetching_policy_type,atd.fetching_policy_type,3]
|
||||
}[Template]
|
||||
self.indpb = 1.0/sum([1 if x==atd.fetching_policy_type else x for x in self.genome_info])
|
||||
|
||||
@@ -64,29 +72,30 @@ class GeneticOperators(object):
|
||||
def decode(self, genome):
|
||||
fetching_policy_type = atd.fetching_policy_type
|
||||
fetch = [fetching_policy_type.FETCH_FROM_LOCAL, fetching_policy_type.FETCH_FROM_GLOBAL_STRIDED, fetching_policy_type.FETCH_FROM_GLOBAL_CONTIGUOUS]
|
||||
decode_element = lambda x:2**int(b_gray_to_bin(''.join(x)), 2)
|
||||
is_gemm = self.Template in [atd.mproduct_nn, atd.mproduct_nt, atd.mproduct_tn, atd.mproduct_tt]
|
||||
result = []
|
||||
offset = 0
|
||||
for x in self.genome_info:
|
||||
for i, x in enumerate(self.genome_info):
|
||||
if x==atd.fetching_policy_type:
|
||||
result.append(fetch[genome[offset]])
|
||||
offset = offset + 1
|
||||
else:
|
||||
result.append(decode_element(genome[offset:offset+x]))
|
||||
decoded = int(b_gray_to_bin(''.join(genome[offset:offset+x])), 2)
|
||||
result.append(decoded if is_gemm and i in [11, 12] else 2**decoded)
|
||||
offset = offset + x
|
||||
#GEMM peculiarities
|
||||
if self.Template in [atd.mproduct_nn, atd.mproduct_nt, atd.mproduct_tn, atd.mproduct_tt]:
|
||||
if is_gemm:
|
||||
if fetching_policy_type.FETCH_FROM_LOCAL in result:
|
||||
lf1 = result[1]*result[3]/result[9]
|
||||
lf1 = result[1]*result[3]/result[10]
|
||||
else:
|
||||
result[9] = 0
|
||||
result[10] = 0
|
||||
lf1 = 0
|
||||
result.append(lf1)
|
||||
return result
|
||||
|
||||
def init(self, N):
|
||||
result = []
|
||||
allowed_idx = [0,1,2] if self.Template in [atd.mproduct_nn, atd.mproduct_nt, atd.mproduct_tn, atd.mproduct_tt] else [1,2]
|
||||
allowed_idx = [0] if self.Template in [atd.mproduct_nn, atd.mproduct_nt, atd.mproduct_tn, atd.mproduct_tt] else [1,2]
|
||||
for idx in allowed_idx:
|
||||
current = []
|
||||
while len(current) < N/len(allowed_idx):
|
||||
@@ -114,14 +123,13 @@ class GeneticOperators(object):
|
||||
while True:
|
||||
new_individual = copy.deepcopy(individual)
|
||||
for i in range(len(new_individual)):
|
||||
if isinstance(individual[i], int) and random.random() < self.indpb:
|
||||
if isinstance(individual[i], int) and random.random() < 0.1:
|
||||
while new_individual[i] == individual[i]:
|
||||
new_individual[i] = random.randint(0, 2)
|
||||
elif not isinstance(individual[i], int) and random.random() < self.indpb:
|
||||
new_individual[i] = '1' if new_individual[i]=='0' else '0'
|
||||
parameters = self.decode(new_individual)
|
||||
template = self.Template(*parameters)
|
||||
#print tools.skip(template, self.symbolic), parameters
|
||||
if not misc_tools.skip(template, self.symbolic):
|
||||
break
|
||||
return new_individual,
|
||||
@@ -130,12 +138,9 @@ class GeneticOperators(object):
|
||||
if tuple(individual) not in self.cache:
|
||||
parameters = self.decode(individual)
|
||||
template = self.Template(*parameters)
|
||||
try:
|
||||
tt = misc_tools.benchmark(template, self.symbolic)
|
||||
self.out.write(','.join([str(tt)]+map(str,map(int,parameters)))+'\n')
|
||||
self.cache[tuple(individual)] = tt
|
||||
except ValueError:
|
||||
self.cache[tuple(individual)] = 10
|
||||
tt = misc_tools.benchmark(template, self.symbolic)
|
||||
self.out.write(','.join([str(tt)]+map(str,map(int,parameters)))+'\n')
|
||||
self.cache[tuple(individual)] = tt
|
||||
return self.cache[tuple(individual)],
|
||||
|
||||
def optimize(self, maxtime, maxgen, compute_perf, perf_metric):
|
||||
|
Reference in New Issue
Block a user