[GH-PAGES] Updated website
This commit is contained in:
@@ -339,7 +339,7 @@ for different problem sizes.</p>
|
||||
15 134217728.0 849.737435 850.656574
|
||||
</pre></div>
|
||||
</div>
|
||||
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 41.742 seconds)</p>
|
||||
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 44.952 seconds)</p>
|
||||
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
|
||||
<div class="sphx-glr-download sphx-glr-download-python docutils container">
|
||||
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>
|
||||
|
@@ -375,16 +375,16 @@ We will then compare its performance against (1) <code class="code docutils lite
|
||||
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
|
||||
N Triton Torch (native) Torch (jit)
|
||||
0 256.0 512.000001 546.133347 188.321838
|
||||
1 384.0 614.400016 585.142862 153.600004
|
||||
1 384.0 585.142862 585.142862 151.703707
|
||||
2 512.0 655.360017 606.814814 154.566038
|
||||
3 640.0 682.666684 640.000002 160.000000
|
||||
4 768.0 722.823517 664.216187 162.754967
|
||||
3 640.0 682.666684 640.000002 158.759699
|
||||
4 768.0 722.823517 664.216187 163.839992
|
||||
.. ... ... ... ...
|
||||
93 12160.0 814.058574 406.179533 198.834951
|
||||
94 12288.0 814.111783 416.101597 199.197579
|
||||
95 12416.0 812.498981 412.149375 198.755369
|
||||
96 12544.0 812.566838 412.971190 199.012395
|
||||
97 12672.0 812.633240 412.097543 199.069228
|
||||
93 12160.0 812.359066 406.179533 198.631953
|
||||
94 12288.0 814.111783 415.661740 198.995960
|
||||
95 12416.0 812.498981 411.296057 198.556711
|
||||
96 12544.0 812.566838 412.971190 198.766042
|
||||
97 12672.0 812.633240 411.679167 198.971549
|
||||
|
||||
[98 rows x 4 columns]
|
||||
</pre></div>
|
||||
@@ -397,7 +397,7 @@ We will then compare its performance against (1) <code class="code docutils lite
|
||||
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
|
||||
</ul>
|
||||
</div></blockquote>
|
||||
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 23.052 seconds)</p>
|
||||
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 22.346 seconds)</p>
|
||||
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
|
||||
<div class="sphx-glr-download sphx-glr-download-python docutils container">
|
||||
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>
|
||||
|
@@ -578,32 +578,32 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
|
||||
7 1152.0 45.242181 ... 46.656000 46.656000
|
||||
8 1280.0 51.200001 ... 56.888887 56.109587
|
||||
9 1408.0 64.138541 ... 67.305878 66.485074
|
||||
10 1536.0 80.430545 ... 79.526831 79.526831
|
||||
10 1536.0 80.430545 ... 79.526831 78.643199
|
||||
11 1664.0 62.929456 ... 62.061463 62.061463
|
||||
12 1792.0 72.512412 ... 72.047592 71.588687
|
||||
13 1920.0 69.120002 ... 70.530615 70.172588
|
||||
14 2048.0 73.908442 ... 77.314362 76.959706
|
||||
15 2176.0 83.155572 ... 86.367588 85.632545
|
||||
16 2304.0 68.251065 ... 76.809875 76.563695
|
||||
17 2432.0 71.305746 ... 74.918570 84.115159
|
||||
18 2560.0 78.019048 ... 81.512437 80.908642
|
||||
19 2688.0 83.186525 ... 89.464755 90.102270
|
||||
20 2816.0 79.879498 ... 83.552120 82.602666
|
||||
21 2944.0 81.100130 ... 82.102191 82.102191
|
||||
22 3072.0 82.661468 ... 87.313963 86.579673
|
||||
23 3200.0 84.656085 ... 95.952022 94.604578
|
||||
24 3328.0 82.891535 ... 84.397770 84.003845
|
||||
25 3456.0 81.849303 ... 91.511426 90.994998
|
||||
26 3584.0 85.308722 ... 90.458141 96.579370
|
||||
27 3712.0 85.528545 ... 88.015279 86.641231
|
||||
28 3840.0 81.079177 ... 84.290672 91.209894
|
||||
29 3968.0 85.871877 ... 91.130650 83.406657
|
||||
30 4096.0 93.142072 ... 91.428970 89.299883
|
||||
12 1792.0 72.512412 ... 71.588687 71.588687
|
||||
13 1920.0 69.120002 ... 70.530615 70.530615
|
||||
14 2048.0 73.908442 ... 76.959706 76.959706
|
||||
15 2176.0 83.500614 ... 85.998493 85.269692
|
||||
16 2304.0 68.446623 ... 76.319081 76.563695
|
||||
17 2432.0 71.305746 ... 74.918570 84.367759
|
||||
18 2560.0 78.019048 ... 81.310171 81.108913
|
||||
19 2688.0 83.461070 ... 89.044730 89.888756
|
||||
20 2816.0 83.392363 ... 81.981598 82.602666
|
||||
21 2944.0 81.967162 ... 80.251257 81.967162
|
||||
22 3072.0 81.825298 ... 88.060814 87.924073
|
||||
23 3200.0 84.656085 ... 95.665176 95.238096
|
||||
24 3328.0 83.226931 ... 84.795401 84.596116
|
||||
25 3456.0 82.266905 ... 91.355888 90.841203
|
||||
26 3584.0 83.876297 ... 93.661869 86.958797
|
||||
27 3712.0 84.946722 ... 85.970176 87.552452
|
||||
28 3840.0 82.747472 ... 86.265212 91.625518
|
||||
29 3968.0 86.114283 ... 90.994735 83.807647
|
||||
30 4096.0 92.563952 ... 85.434583 85.271746
|
||||
|
||||
[31 rows x 5 columns]
|
||||
</pre></div>
|
||||
</div>
|
||||
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 23.909 seconds)</p>
|
||||
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 59.817 seconds)</p>
|
||||
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
|
||||
<div class="sphx-glr-download sphx-glr-download-python docutils container">
|
||||
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>
|
||||
|
@@ -371,7 +371,7 @@ to explore the <cite>triton/language/random</cite> folder!</p>
|
||||
<dd><p>Nitish Srivastava and Geoffrey Hinton and Alex Krizhevsky and Ilya Sutskever and Ruslan Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, JMLR 2014</p>
|
||||
</dd>
|
||||
</dl>
|
||||
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.011 seconds)</p>
|
||||
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.114 seconds)</p>
|
||||
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-04-low-memory-dropout-py">
|
||||
<div class="sphx-glr-download sphx-glr-download-python docutils container">
|
||||
<p><a class="reference download internal" download="" href="../../_downloads/c9aed78977a4c05741d675a38dde3d7d/04-low-memory-dropout.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">04-low-memory-dropout.py</span></code></a></p>
|
||||
|
@@ -194,36 +194,36 @@ to download the full example code</p>
|
||||
<p class="sphx-glr-script-out">Out:</p>
|
||||
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>layer-norm-backward:
|
||||
N Triton Torch Apex
|
||||
0 1024.0 311.088617 99.096776 311.088617
|
||||
1 1536.0 351.085717 133.083026 341.333333
|
||||
2 2048.0 423.724127 162.217818 336.657521
|
||||
3 2560.0 461.954908 182.857144 330.322572
|
||||
4 3072.0 515.580429 191.501303 320.556515
|
||||
5 3584.0 554.941930 208.271186 308.301075
|
||||
6 4096.0 568.231237 220.412561 297.890900
|
||||
7 4608.0 498.162157 231.849059 287.251954
|
||||
8 5120.0 525.128191 242.845844 283.787523
|
||||
9 5632.0 538.517949 243.107920 291.310338
|
||||
10 6144.0 544.118087 248.661056 286.322318
|
||||
11 6656.0 527.207907 256.000009 286.793541
|
||||
12 7168.0 505.976473 262.243907 288.644296
|
||||
13 7680.0 481.253256 260.707203 276.756754
|
||||
14 8192.0 460.440290 269.326017 287.018988
|
||||
15 8704.0 416.958106 267.472468 284.987724
|
||||
16 9216.0 428.651187 273.066667 289.507855
|
||||
17 9728.0 438.857162 280.615388 288.950501
|
||||
18 10240.0 447.650282 286.767793 290.153487
|
||||
19 10752.0 430.079980 246.699797 290.267711
|
||||
20 11264.0 429.786952 245.091565 285.767446
|
||||
21 11776.0 421.826879 249.447482 288.686414
|
||||
22 12288.0 420.102570 254.453844 294.911986
|
||||
23 12800.0 415.696898 253.465340 290.084977
|
||||
24 13312.0 412.242569 252.759501 290.179836
|
||||
25 13824.0 405.098897 257.190689 292.829653
|
||||
26 14336.0 397.761846 254.862216 286.481278
|
||||
27 14848.0 384.414233 257.293872 289.246765
|
||||
28 15360.0 374.253788 257.790220 288.000007
|
||||
29 15872.0 367.336555 262.890274 291.229369
|
||||
0 1024.0 311.088617 99.497980 303.407414
|
||||
1 1536.0 351.085717 134.540150 341.333333
|
||||
2 2048.0 423.724127 161.684218 325.509933
|
||||
3 2560.0 465.454542 182.857144 332.108113
|
||||
4 3072.0 515.580429 191.501303 315.076914
|
||||
5 3584.0 551.384634 207.768111 308.301075
|
||||
6 4096.0 568.231237 220.412561 300.623865
|
||||
7 4608.0 500.416301 231.849059 292.571431
|
||||
8 5120.0 525.128191 242.845844 288.450695
|
||||
9 5632.0 542.843364 242.236559 287.591490
|
||||
10 6144.0 548.163546 249.925419 288.000001
|
||||
11 6656.0 537.858601 254.369423 284.748652
|
||||
12 7168.0 510.480705 254.862216 278.368936
|
||||
13 7680.0 482.513091 262.190612 276.341823
|
||||
14 8192.0 462.607053 267.130429 280.068380
|
||||
15 8704.0 416.127506 265.096445 283.056921
|
||||
16 9216.0 429.483477 272.394084 288.375482
|
||||
17 9728.0 436.396262 281.630872 290.027323
|
||||
18 10240.0 446.025405 285.435547 288.789653
|
||||
19 10752.0 432.966444 246.935876 290.922209
|
||||
20 11264.0 429.104745 244.869560 287.285864
|
||||
21 11776.0 422.457417 249.667843 288.981596
|
||||
22 12288.0 420.102570 254.234486 294.617366
|
||||
23 12800.0 416.824953 253.256381 288.180121
|
||||
24 13312.0 411.181478 250.972500 288.346556
|
||||
25 13824.0 405.594132 257.091040 292.056329
|
||||
26 14336.0 400.074432 255.051144 287.678923
|
||||
27 14848.0 383.999990 255.816222 287.380642
|
||||
28 15360.0 373.495460 259.422943 286.656296
|
||||
29 15872.0 370.192407 262.347108 290.120338
|
||||
</pre></div>
|
||||
</div>
|
||||
<div class="line-block">
|
||||
@@ -477,7 +477,7 @@ to download the full example code</p>
|
||||
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">'.'</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
|
||||
</pre></div>
|
||||
</div>
|
||||
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 11.919 seconds)</p>
|
||||
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 10.468 seconds)</p>
|
||||
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
|
||||
<div class="sphx-glr-download sphx-glr-download-python docutils container">
|
||||
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>
|
||||
|
@@ -174,7 +174,7 @@
|
||||
|
||||
<div class="section" id="computation-times">
|
||||
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline">¶</a></h1>
|
||||
<p><strong>12:40.633</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
|
||||
<p><strong>13:17.697</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
|
||||
<table class="docutils align-default">
|
||||
<colgroup>
|
||||
<col style="width: 85%" />
|
||||
@@ -183,23 +183,23 @@
|
||||
</colgroup>
|
||||
<tbody>
|
||||
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
|
||||
<td><p>05:23.909</p></td>
|
||||
<td><p>05:59.817</p></td>
|
||||
<td><p>0.0 MB</p></td>
|
||||
</tr>
|
||||
<tr class="row-even"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
|
||||
<td><p>03:23.052</p></td>
|
||||
<td><p>03:22.346</p></td>
|
||||
<td><p>0.0 MB</p></td>
|
||||
</tr>
|
||||
<tr class="row-odd"><td><p><a class="reference internal" href="05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">Layer Normalization</span></a> (<code class="docutils literal notranslate"><span class="pre">05-layer-norm.py</span></code>)</p></td>
|
||||
<td><p>02:11.919</p></td>
|
||||
<td><p>02:10.468</p></td>
|
||||
<td><p>0.0 MB</p></td>
|
||||
</tr>
|
||||
<tr class="row-even"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
|
||||
<td><p>01:41.742</p></td>
|
||||
<td><p>01:44.952</p></td>
|
||||
<td><p>0.0 MB</p></td>
|
||||
</tr>
|
||||
<tr class="row-odd"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>
|
||||
<td><p>00:00.011</p></td>
|
||||
<td><p>00:00.114</p></td>
|
||||
<td><p>0.0 MB</p></td>
|
||||
</tr>
|
||||
</tbody>
|
||||
|
Reference in New Issue
Block a user