[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2022-08-03 00:52:19 +00:00
parent de0c86c743
commit d84d42ef8d
167 changed files with 302 additions and 302 deletions

View File

@@ -322,24 +322,24 @@ for different problem sizes.</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>vector-add-performance:
size Triton Torch
0 4096.0 9.600000 9.600000
1 8192.0 19.200000 19.200000
1 8192.0 19.200000 15.999999
2 16384.0 38.400001 38.400001
3 32768.0 76.800002 76.800002
4 65536.0 127.999995 127.999995
5 131072.0 219.428568 219.428568
6 262144.0 341.333321 341.333321
6 262144.0 341.333321 384.000001
7 524288.0 472.615390 472.615390
8 1048576.0 614.400016 614.400016
9 2097152.0 722.823517 722.823517
10 4194304.0 780.190482 780.190482
11 8388608.0 812.429770 812.429770
12 16777216.0 833.084721 833.084721
13 33554432.0 842.004273 842.906750
13 33554432.0 842.004273 843.811163
14 67108864.0 847.448255 848.362445
15 134217728.0 849.737435 850.656574
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 43.820 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 48.257 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>

View File

@@ -374,17 +374,17 @@ We will then compare its performance against (1) <code class="code docutils lite
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 512.000001 546.133347 188.321838
1 384.0 585.142862 585.142862 151.703707
0 256.0 512.000001 546.133347 186.181817
1 384.0 614.400016 585.142862 153.600004
2 512.0 655.360017 606.814814 154.566038
3 640.0 682.666684 640.000002 160.000000
4 768.0 722.823517 664.216187 163.839992
4 768.0 722.823517 664.216187 162.754967
.. ... ... ... ...
93 12160.0 812.359066 406.179533 198.834951
94 12288.0 814.111783 415.661740 198.995960
95 12416.0 812.498981 411.296057 198.755369
96 12544.0 812.566838 412.971190 199.012395
97 12672.0 812.633240 412.097543 198.971549
93 12160.0 814.058574 406.179533 198.530610
94 12288.0 814.111783 416.101597 198.794749
95 12416.0 812.498981 412.149375 198.457532
96 12544.0 812.566838 412.971190 198.716830
97 12672.0 812.633240 412.097543 198.873965
[98 rows x 4 columns]
</pre></div>
@@ -397,7 +397,7 @@ We will then compare its performance against (1) <code class="code docutils lite
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 24.302 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 24.240 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>

View File

@@ -569,7 +569,7 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 256.0 2.730667 ... 2.978909 2.978909
1 384.0 7.372800 ... 7.899428 7.899428
1 384.0 7.372800 ... 8.507077 8.507077
2 512.0 14.563555 ... 16.384000 16.384000
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 32.768000 ... 34.028308 34.028308
@@ -579,31 +579,31 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
8 1280.0 51.200001 ... 56.888887 56.888887
9 1408.0 64.138541 ... 67.305878 67.305878
10 1536.0 80.430545 ... 80.430545 79.526831
11 1664.0 62.929456 ... 62.492442 62.061463
12 1792.0 72.983276 ... 72.512412 72.047592
13 1920.0 69.120002 ... 70.530615 70.530615
11 1664.0 63.372618 ... 62.492442 62.061463
12 1792.0 72.983276 ... 72.047592 71.588687
13 1920.0 69.120002 ... 70.530615 70.172588
14 2048.0 73.908442 ... 77.314362 76.959706
15 2176.0 83.500614 ... 85.998493 85.632545
16 2304.0 68.251065 ... 76.809875 76.809875
17 2432.0 71.305746 ... 74.719317 84.877538
18 2560.0 77.833728 ... 81.108913 80.511054
19 2688.0 83.369354 ... 89.676257 89.254248
20 2816.0 79.154642 ... 83.552120 82.916747
21 2944.0 81.967162 ... 82.646820 82.441740
22 3072.0 82.540970 ... 89.593522 86.712254
23 3200.0 80.503145 ... 91.756271 93.158662
24 3328.0 82.275764 ... 84.795401 85.602017
25 3456.0 82.688790 ... 91.046379 88.400840
26 3584.0 87.381330 ... 97.522120 98.160909
27 3712.0 84.159518 ... 88.326564 83.040189
28 3840.0 84.164384 ... 92.159996 85.333335
29 3968.0 92.723355 ... 84.038524 91.130650
30 4096.0 87.495257 ... 86.536250 91.992956
15 2176.0 83.500614 ... 86.367588 84.909907
16 2304.0 68.251065 ... 76.809875 76.563695
17 2432.0 71.305746 ... 74.918570 84.877538
18 2560.0 78.019048 ... 81.310171 80.412266
19 2688.0 83.552988 ... 89.464755 90.102270
20 2816.0 79.587973 ... 80.617762 82.602666
21 2944.0 82.921853 ... 78.979452 82.441740
22 3072.0 81.472093 ... 85.792579 83.269271
23 3200.0 84.656085 ... 92.888243 95.096582
24 3328.0 82.041364 ... 83.130825 84.695641
25 3456.0 81.518272 ... 91.511426 90.892410
26 3584.0 86.457107 ... 91.563533 94.947616
27 3712.0 83.806497 ... 86.192706 88.443856
28 3840.0 80.255442 ... 90.574940 89.043476
29 3968.0 92.512459 ... 83.807647 80.015697
30 4096.0 93.271527 ... 84.360608 86.424811
[31 rows x 5 columns]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 23.071 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 24.119 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>

View File

@@ -371,7 +371,7 @@ to explore the <cite>triton/language/random</cite> folder!</p>
<dd><p>Nitish Srivastava and Geoffrey Hinton and Alex Krizhevsky and Ilya Sutskever and Ruslan Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, JMLR 2014</p>
</dd>
</dl>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.011 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.010 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-04-low-memory-dropout-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/c9aed78977a4c05741d675a38dde3d7d/04-low-memory-dropout.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">04-low-memory-dropout.py</span></code></a></p>

View File

@@ -194,36 +194,36 @@ to download the full example code</p>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>layer-norm-backward:
N Triton Torch Apex
0 1024.0 311.088617 93.801531 292.571431
1 1536.0 351.085717 135.529409 344.523365
2 2048.0 423.724127 161.684218 325.509933
3 2560.0 461.954908 183.402991 330.322572
4 3072.0 519.211251 191.999993 317.793096
5 3584.0 551.384634 208.271186 309.410081
6 4096.0 564.965515 220.907859 301.546004
7 4608.0 500.416301 233.316456 292.571431
8 5120.0 529.655159 242.845844 287.775181
9 5632.0 536.380957 243.545956 290.683877
10 6144.0 544.118087 250.349744 286.322318
11 6656.0 534.260858 255.182111 284.748652
12 7168.0 510.480705 255.619613 278.820105
13 7680.0 486.332448 265.208635 280.975614
14 8192.0 460.440290 266.046015 282.482757
15 8704.0 417.791980 264.425310 283.826081
16 9216.0 428.651187 270.065931 286.879380
17 9728.0 438.857162 281.971008 288.593329
18 10240.0 446.025405 286.100109 289.129408
0 1024.0 307.200008 99.096776 307.200008
1 1536.0 351.085717 133.083026 338.201833
2 2048.0 423.724127 162.217818 327.679984
3 2560.0 461.954908 182.857144 325.079368
4 3072.0 515.580429 191.501303 319.168834
5 3584.0 554.941930 208.271186 308.301075
6 4096.0 568.231237 220.412561 298.796351
7 4608.0 498.162157 231.849059 287.251954
8 5120.0 525.128191 242.845844 286.433562
9 5632.0 538.517949 243.545956 290.683877
10 6144.0 542.117638 248.661056 286.322318
11 6656.0 527.207907 256.000009 286.279570
12 7168.0 507.469040 262.243907 288.644296
13 7680.0 481.253256 260.707203 277.172933
14 8192.0 460.440290 268.957600 286.600589
15 8704.0 416.958106 267.472468 284.987724
16 9216.0 428.651187 273.066667 289.507855
17 9728.0 439.683593 280.278512 288.950501
18 10240.0 446.836366 286.433562 290.153487
19 10752.0 429.364408 246.699797 290.267711
20 11264.0 429.104745 245.091565 286.372873
21 11776.0 423.724129 248.569911 288.097854
22 12288.0 420.701865 252.493141 294.323369
23 12800.0 415.135142 253.465340 287.640454
24 13312.0 411.711355 253.160074 290.707920
25 13824.0 406.588243 257.790206 292.571423
26 14336.0 396.844280 254.109315 287.438588
27 14848.0 386.080180 256.737757 290.662311
28 15360.0 373.874218 259.422943 289.811315
29 15872.0 370.913333 263.071829 291.452168
20 11264.0 429.104745 245.091565 285.767446
21 11776.0 421.198220 249.227509 288.981596
22 12288.0 420.102570 254.453844 294.911986
23 12800.0 415.696898 253.465340 288.180121
24 13312.0 412.242569 252.559690 290.179836
25 13824.0 405.098897 257.390218 292.571423
26 14336.0 397.761846 254.673567 286.242939
27 14848.0 384.414233 257.108233 289.246765
28 15360.0 374.253788 257.790220 286.656296
29 15872.0 366.982663 262.708969 291.229369
</pre></div>
</div>
<div class="line-block">
@@ -477,7 +477,7 @@ to download the full example code</p>
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 11.781 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 12.043 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>

View File

@@ -174,7 +174,7 @@
<div class="section" id="computation-times">
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline"></a></h1>
<p><strong>12:42.984</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<p><strong>12:48.670</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 85%" />
@@ -183,23 +183,23 @@
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
<td><p>05:23.071</p></td>
<td><p>05:24.119</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
<td><p>03:24.302</p></td>
<td><p>03:24.240</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">Layer Normalization</span></a> (<code class="docutils literal notranslate"><span class="pre">05-layer-norm.py</span></code>)</p></td>
<td><p>02:11.781</p></td>
<td><p>02:12.043</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
<td><p>01:43.820</p></td>
<td><p>01:48.257</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>
<td><p>00:00.011</p></td>
<td><p>00:00.010</p></td>
<td><p>0.0 MB</p></td>
</tr>
</tbody>