[CODEGEN] Performance improvement on A100 (#125)

Improved codegen for the Ampere GPUs.

    * Make the layout pass recognize the multistage pipelined pattern.
    * Now the pipeline pass can automate the multistage pipelining transformation.
    * Remove extra barriers (from the prefetch pass & WAR) on Ampere.
    * Update the code generator (generator.cc) to make Triton generate n-buffered shared memory loads/stores.
This commit is contained in:
daadaada
2021-06-21 14:25:13 +08:00
committed by Philippe Tillet
parent 5a51f3e529
commit d8d6b715c8
21 changed files with 855 additions and 174 deletions

View File

@@ -212,18 +212,41 @@ void generator::visit_value(ir::value* v) {
return;
if(v->get_type()->is_block_ty()){
if(analysis::shared_layout* layout = layouts_->get(v)->to_shared()){
auto double_buffer = layout->get_double_buffer();
analysis::N_buffer_info_t *n_buffer = layout->get_N_buffer();
analysis::double_buffer_info_t *double_buffer = layout->get_double_buffer();
// offset
Value *offset = nullptr;
if(double_buffer && v == double_buffer->phi)
offset = shared_off_[layout];
// base pointer
Value *ptr = shared_ptr_[layout];
if(double_buffer && v == double_buffer->latch)
ptr = shared_next_ptr_[layout];
else if(double_buffer && v == double_buffer->first)
ptr = shared_pre_ptr_[layout];
if (n_buffer) {
// ptr = base (shared_ptr_[layout]) + smem_idx * size
// read_smem_idx
if (v == n_buffer->phi) {
ptr = shared_ptr_[layout];
}
// write_smem_idx
if (std::find(n_buffer->firsts.begin(), n_buffer->firsts.end(), v) != n_buffer->firsts.end()) {
int write_smem_idx = /*stage_idx*/n_buffer->firsts_idx.at(v);
int elements = write_smem_idx * layout->get_per_stage_elements();
ptr = gep(shared_pre_ptr_[layout], i32(elements));
} else if (v == n_buffer->latch) {
Value* write_smem_idx = write_smem_idx_[layout];
Value* elements = mul(write_smem_idx, i32(layout->get_per_stage_elements()));
ptr = gep(shared_pre_ptr_[layout], elements);
}
} else if (double_buffer) {
if(v == double_buffer->phi)
offset = shared_off_[layout];
if(v == double_buffer->latch)
ptr = shared_next_ptr_[layout];
else if(v == double_buffer->first)
ptr = shared_pre_ptr_[layout];
} // else do nothing
// what visit_dot & vist_cts & ... see
shmems_[v] = ptr;
// now only latches have offset (PHINode), only used by finalize_share_layout()
shoffs_[v] = offset;
}
}
@@ -1223,24 +1246,21 @@ void generator::visit_mma884(ir::dot_inst* C, ir::value *A, ir::value *B, ir::va
* \brief Code Generation for `mma.16816` (A100)
*/
//TODO: clean-up
void generator::visit_mma16816(ir::dot_inst* dot, ir::value *A, ir::value *B, ir::value *D, unsigned NK) {
const auto& shapes = dot->get_type()->get_block_shapes();
void generator::visit_mma16816(ir::dot_inst* C, ir::value *A, ir::value *B, ir::value *D, unsigned NK) {
const std::vector<unsigned>& shapes = C->get_type()->get_block_shapes();
std::map<std::vector<Value*>, std::vector<Value*>> fcs;
for(indices_t idx: idxs_.at(dot)){
for(indices_t idx: idxs_.at(C)){
std::vector<Value*> key(idx.size() - 2);
std::copy(idx.begin() + 2, idx.end(), key.begin());
fcs[key].push_back(vals_[D][idx]);
};
auto shape_a = A->get_type()->get_block_shapes();
auto shape_b = B->get_type()->get_block_shapes();
auto ord_a = layouts_->get(A)->get_order();
auto ord_b = layouts_->get(B)->get_order();
analysis::mma_layout* layout = layouts_->get(dot)->to_mma();
analysis::shared_layout* layout_a = (analysis::shared_layout*)layouts_->get(dot->get_operand(0));
analysis::shared_layout* layout_b = (analysis::shared_layout*)layouts_->get(dot->get_operand(1));
analysis::mma_layout* layout = layouts_->get(C)->to_mma();
analysis::shared_layout* layout_a = (analysis::shared_layout*)layouts_->get(C->get_operand(0));
analysis::shared_layout* layout_b = (analysis::shared_layout*)layouts_->get(C->get_operand(1));
bool is_a_row = ord_a[0] == 1;
bool is_b_row = ord_b[0] == 1;
std::string a_trans = is_a_row ? "" : ".trans";
@@ -1264,8 +1284,6 @@ void generator::visit_mma16816(ir::dot_inst* dot, ir::value *A, ir::value *B, ir
int vec_a = 8;
int vec_b = 8;
Type *fp32_ty = f32_ty;
Type *fp16x2_ty = vec_ty(f16_ty, 2);
Type *fp16x2_pack4_ty = StructType::get(*ctx_, std::vector<llvm::Type*>{fp16x2_ty, fp16x2_ty, fp16x2_ty, fp16x2_ty});
@@ -1276,7 +1294,6 @@ void generator::visit_mma16816(ir::dot_inst* dot, ir::value *A, ir::value *B, ir
std::map<std::pair<unsigned, unsigned>, std::pair<Value*, Value*>> ha;
std::map<std::pair<unsigned, unsigned>, Value*> hb;
BasicBlock* CurrBB = builder_->GetInsertBlock();
BasicBlock* FirstBB = &CurrBB->getParent()->getEntryBlock();
builder_->SetInsertPoint(FirstBB->getTerminator());
@@ -1339,66 +1356,167 @@ void generator::visit_mma16816(ir::dot_inst* dot, ir::value *A, ir::value *B, ir
"{$0, $1, $2, $3}, "
"{$4, $5, $6, $7}, "
"{$8, $9}, "
"{$10, $11, $12, $13};", "=f,=f,=f,=f,r,r,r,r,r,r,0,1,2,3", false);
"{$10, $11, $12, $13};",
"=f,=f,=f,=f,r,r,r,r,r,r,0,1,2,3", true);
unsigned num_rep_0 = shapes[0] / layout->spt(0);
unsigned num_rep_1 = shapes[1] / layout->spt(1);
for(unsigned K = 0; K < NK; K += 16)
for(unsigned m = 0; m < num_rep_0; m++)
for(unsigned n = 0; n < num_rep_1; n++){
if(ha.find({m, K}) == ha.end()){
Value* ptra = ptrs_a[(is_a_row ? K/16 : m) % num_ptr_a];
// create mma & unpack result
auto call_mma = [&](unsigned m, unsigned n, unsigned K) {
unsigned cols_per_thread = num_rep_0 * 2;
std::vector<size_t> idx = {
(m*2 + 0) + (n*2 + 0)*cols_per_thread,
(m*2 + 0) + (n*2 + 1)*cols_per_thread,
(m*2 + 1) + (n*2 + 0)*cols_per_thread,
(m*2 + 1) + (n*2 + 1)*cols_per_thread
};
Value *nc = call(mma_ty, mma_fn, {ha[{m, K}].first, ha[{m, K}].second,ha[{m, K+8}].first, ha[{m, K+8}].second,
hb[{n, K}], hb[{n, K+8}],
fc[idx[0]], fc[idx[1]], fc[idx[2]], fc[idx[3]]});
fc[idx[0]] = extract_val(nc, std::vector<unsigned>{0});
fc[idx[1]] = extract_val(nc, std::vector<unsigned>{1});
fc[idx[2]] = extract_val(nc, std::vector<unsigned>{2});
fc[idx[3]] = extract_val(nc, std::vector<unsigned>{3});
};
ir::phi_node* phiA = dynamic_cast<ir::phi_node*>(A);
ir::phi_node* phiB = dynamic_cast<ir::phi_node*>(B);
auto register_lds =
[&](decltype(ha)& vals, int m, int K, int inc, Value* val0, Value *val1, bool is_prefetch) {
if (K <= 8 && is_prefetch) {
ir::basic_block* inc_block = phiA->get_incoming_block(inc);
lazy_phi_incs_.push_back(std::make_tuple((PHINode*)vals[{m, K}].first, val0, inc_block));
lazy_phi_incs_.push_back(std::make_tuple((PHINode*)vals[{m, K}].second, val1, inc_block));
} else
vals[{m, K}] = {val0, val1};
};
auto register_lds2 =
[&](decltype(hb)& vals, int m, int K, int inc, Value* val, bool is_prefetch) {
if (K <= 8 && is_prefetch) {
ir::basic_block* inc_block = phiA->get_incoming_block(inc);
lazy_phi_incs_.push_back(std::make_tuple((PHINode*)vals[{m, K}], val, inc_block));
} else
vals[{m, K}] = val;
};
auto load_a = [&](int m, int K, int inc, bool is_prefetch) {
int offidx = (is_a_row ? K/16 : m) % num_ptr_a;
Value* ptra;
if(K == 0 && is_prefetch){
if(inc == 0)
ptra = gep(shared_pre_ptr_[layout_a], off_a[offidx]);
else
ptra = gep(shared_next_ptr_[layout_a], off_a[offidx]);
}
else
ptra = ptrs_a[offidx];
int step_am = is_a_row ? m : m / (num_ptr_a)*(num_ptr_a);
int step_ak = is_a_row ? K / (num_ptr_a*16)*(num_ptr_a*16) : K;
InlineAsm *ld_a0_fn = InlineAsm::get(ld_x4_ty, "ldmatrix.sync.aligned.m8n8.x4" + a_trans + ".shared.b16 "
"{$0, $1, $2, $3}, [$4 + " + std::to_string(2*step_am*16*layout->wpt(0)*stride_a_m + 2*step_ak*stride_a_k) + "];", "=r,=r,=r,=r,r", false);
"{$0, $1, $2, $3}, [$4 + " +
std::to_string(2*step_am*16*layout->wpt(0)*stride_a_m + 2*step_ak*stride_a_k) + "];",
"=r,=r,=r,=r,r", true);
Value *haa = call(ld_x4_ty, ld_a0_fn, {ptra});
if(K == 0 && inc == 1 && is_prefetch)
prefetch_latch_to_bb_[phiA->get_incoming_value(1)].push_back(haa);
Value *ha0 = extract_val(haa, std::vector<unsigned>{0});
Value *ha1 = extract_val(haa, std::vector<unsigned>{1});
Value *ha2 = extract_val(haa, std::vector<unsigned>{2});
Value *ha3 = extract_val(haa, std::vector<unsigned>{3});
ha[{m, K}] = std::make_pair(ha0, ha1);
ha[{m, K+8}] = std::make_pair(ha2, ha3);
}
if(hb.find({n, K})==hb.end()){
Value* ptrb = ptrs_b[(is_b_row ? n : K/16) % num_ptr_b];
register_lds(ha, m, K, inc, ha0, ha1, is_prefetch);
register_lds(ha, m, K + 8, inc, ha2, ha3, is_prefetch);
};
auto load_b = [&](int n, int K, int inc, bool is_prefetch) {
int offidx = (is_b_row ? n : K/16) % num_ptr_b;
Value* ptrb;
if(K == 0 && is_prefetch){
if(inc == 0)
ptrb = gep(shared_pre_ptr_[layout_b], off_b[offidx]);
else
ptrb = gep(shared_next_ptr_[layout_b], off_b[offidx]);
}
else
ptrb = ptrs_b[offidx];
int step_bn = is_b_row ? n / (num_ptr_b)*(num_ptr_b) : n;
int step_bk = is_b_row ? K : K / (num_ptr_b*8)*(num_ptr_b*8);
InlineAsm *ld_b_fn = InlineAsm::get(ld_x4_ty, "ldmatrix.sync.aligned.m8n8.x4" + b_trans + ".shared.b16 "
"{$0, $1, $2, $3}, [$4 + " + std::to_string(2*step_bn*8*layout->wpt(1)*stride_b_n + 2*step_bk*stride_b_k) + "];", "=r,=r,=r,=r,r", false);
"{$0, $1, $2, $3}, [$4 + " +
std::to_string(2*step_bn*8*layout->wpt(1)*stride_b_n + 2*step_bk*stride_b_k) + "];",
"=r,=r,=r,=r,r", true);
Value *hbb = call(ld_x4_ty, ld_b_fn, {ptrb});
if(K == 0 && inc == 1 && is_prefetch)
prefetch_latch_to_bb_[phiB->get_incoming_value(1)].push_back(hbb);
Value *hb0 = extract_val(hbb, std::vector<unsigned>{0});
Value *hb1 = extract_val(hbb, std::vector<unsigned>{1});
Value *hb2 = extract_val(hbb, std::vector<unsigned>{2});
Value *hb3 = extract_val(hbb, std::vector<unsigned>{3});
hb[{n, K}] = hb0;
hb[{n+1, K}] = hb2;
hb[{n, K+8}] = hb1;
hb[{n+1, K+8}] = hb3;
}
unsigned cols_per_thread = num_rep_0 * 2;
std::vector<size_t> idx = {
(m*2 + 0) + (n*2 + 0)*cols_per_thread,
(m*2 + 0) + (n*2 + 1)*cols_per_thread,
(m*2 + 1) + (n*2 + 0)*cols_per_thread,
(m*2 + 1) + (n*2 + 1)*cols_per_thread
};
Value *nc = call(mma_ty, mma_fn, {ha[{m, K}].first, ha[{m, K}].second,ha[{m, K+8}].first, ha[{m, K+8}].second,
hb[{n, K}], hb[{n, K+8}],
fc[idx[0]], fc[idx[1]], fc[idx[2]], fc[idx[3]]});
fc[idx[0]] = extract_val(nc, std::vector<unsigned>{0});
fc[idx[1]] = extract_val(nc, std::vector<unsigned>{1});
fc[idx[2]] = extract_val(nc, std::vector<unsigned>{2});
fc[idx[3]] = extract_val(nc, std::vector<unsigned>{3});
}
register_lds2(hb, n, K, inc, hb0, is_prefetch);
register_lds2(hb, n+1, K, inc, hb2, is_prefetch);
register_lds2(hb, n, K+8, inc, hb1, is_prefetch);
register_lds2(hb, n+1, K+8, inc, hb3, is_prefetch);
};
if (C->is_prefetched()) {
// create phis
builder_->SetInsertPoint(CurrBB->getFirstNonPHI());
for(unsigned m = 0; m < num_rep_0; m++){
ha[{m, 0}].first = phi(fp16x2_ty, 2);
ha[{m, 0}].second = phi(fp16x2_ty, 2);
ha[{m, 8}].first = phi(fp16x2_ty, 2);
ha[{m, 8}].second = phi(fp16x2_ty, 2);
}
for(unsigned n = 0; n < num_rep_1; n+=2){
hb[{n, 0}] = phi(fp16x2_ty, 2);
hb[{n+1, 0}] = phi(fp16x2_ty, 2);
hb[{n, 8}] = phi(fp16x2_ty, 2);
hb[{n+1, 8}] = phi(fp16x2_ty, 2);
}
// insert prefetched lds at the end of loop header
builder_->SetInsertPoint(bbs_[phiA->get_incoming_block(0)]->getTerminator());
for(unsigned m = 0; m < num_rep_0; m++)
load_a(m, 0, 0, true);
for(unsigned n = 0; n < num_rep_1; n+=2)
load_b(n, 0, 0, true);
// update accumulators
builder_->SetInsertPoint(CurrBB);
for(unsigned K = 0; K < NK; K += 16){
int NEXTK = (K + 16) % NK;
// prefetch A
for(unsigned m = 0; m < num_rep_0; m++)
load_a(m, NEXTK, 1, true);
// prefetch B
for(unsigned n = 0; n < num_rep_1; n+=2)
load_b(n, NEXTK, 1, true);
// tensor core ops
for(unsigned m = 0; m < num_rep_0; m++)
for(unsigned n = 0; n < num_rep_1; n++){
call_mma(m, n, K);
}
}
}
else{
for(unsigned K = 0; K < NK; K += 16)
for(unsigned m = 0; m < num_rep_0; m++)
for(unsigned n = 0; n < num_rep_1; n++){
if(ha.find({m, K}) == ha.end())
load_a(m, K, 0, false);
if(hb.find({n, K})==hb.end())
load_b(n, K, 0, false);
call_mma(m, n, K);
}
}
// write back
unsigned i = 0;
for(indices_t idx: idxs_.at(dot)){
for(indices_t idx: idxs_.at(C)){
std::vector<Value*> key(idx.size() - 2);
std::copy(idx.begin() + 2, idx.end(), key.begin());
if(i >= fcs.at(key).size())
i = 0;
vals_[dot][idx] = fcs.at(key)[i++];
vals_[C][idx] = fcs.at(key)[i++];
};
}
@@ -2252,8 +2370,35 @@ void generator::visit_layout_scanline(analysis::scanline_layout* layout) {
void generator::visit_layout_shared(analysis::shared_layout* layout) {
Type* ty = cvt(layout->get_type());
PointerType *ptr_ty = ty->getPointerTo(shmem_->getType()->getPointerAddressSpace());
// double-buffered
if(layout->get_double_buffer()) {
if (layout->get_N_buffer()) {
// create pointers
shared_pre_ptr_[layout] = gep(shmem_, i32(alloc_->offset(layout)));
shared_pre_ptr_[layout] = bit_cast(shared_pre_ptr_[layout], ptr_ty);
BasicBlock *current = builder_->GetInsertBlock();
auto info = *layout->get_N_buffer();
ir::phi_node *phi = info.phi;
BasicBlock *parent = bbs_.at(phi->get_parent());
if(parent->empty())
builder_->SetInsertPoint(parent);
else if (const Instruction *first_non_phi = &*parent->getFirstNonPHI()) {
builder_->SetInsertPoint(&*parent->getFirstNonPHI());
} else
builder_->SetInsertPoint(parent);
// create smem_idx
read_smem_idx_[layout] = phi(i32_ty, 2);
write_smem_idx_[layout] = phi(i32_ty, 2);
// create pointers
// ptr of the current iteration
shared_ptr_[layout] = phi(ptr_ty, 2);
// ptr of the next iteration
shared_next_ptr_[layout] = phi(ptr_ty, 2);
builder_->SetInsertPoint(current);
} else if(layout->get_double_buffer()) {
BasicBlock *current = builder_->GetInsertBlock();
auto info = *layout->get_double_buffer();
ir::phi_node *phi = info.phi;
@@ -2269,8 +2414,7 @@ void generator::visit_layout_shared(analysis::shared_layout* layout) {
shared_off_[layout] = phi(i32_ty, 2);
shared_next_ptr_[layout] = gep(shared_ptr_[layout], shared_off_[layout], "next_ptr");
builder_->SetInsertPoint(current);
}
else{
} else{
size_t offset = alloc_->offset(layout);
shared_ptr_[layout] = gep(shmem_, i32(offset));
shared_ptr_[layout] = bit_cast(shared_ptr_[layout], ptr_ty);
@@ -2354,7 +2498,67 @@ void generator::init_idx(ir::value *v) {
}
void generator::finalize_shared_layout(analysis::shared_layout *shared) {
if(shared->get_double_buffer()) {
if (auto n_buffer = shared->get_N_buffer()) {
// if (*_smem_idx == #stages-1) {
// *_smem_idx = 0;
// } else *_smem_idx++;
auto finalize_smem_idx = [&](auto &smem_idx, int init_stage) {
// insert point
Value *idx = smem_idx[shared];
builder_->SetInsertPoint(bbs_.at(n_buffer->phi->get_parent())->getTerminator());
Value *cond = icmp_eq(idx, i32(shared->get_num_stages()-1));
PHINode *_ret = phi(i32_ty, 2);
Instruction *then_term = nullptr;
Instruction *else_term = nullptr;
Instruction *dummy = builder_->CreateRet(nullptr);
llvm::SplitBlockAndInsertIfThenElse(cond, _ret, &then_term, &else_term, nullptr);
dummy->removeFromParent();
builder_->SetInsertPoint(then_term);
Value *zero_smem_idx = i32(0);
builder_->SetInsertPoint(else_term);
Value *inc_smem_idx = add(idx, i32(1));
builder_->SetInsertPoint(_ret->getParent());
_ret->addIncoming(zero_smem_idx, then_term->getParent());
_ret->addIncoming(inc_smem_idx, else_term->getParent());
// update ir::bb -> llvm::bb mapping
bbs_.at(n_buffer->phi->get_parent()) = builder_->GetInsertBlock();
// idx = init_stage;
// loop: ...
if (auto idx_phi = llvm::dyn_cast<PHINode>(smem_idx[shared])) {
idx_phi->addIncoming(i32(init_stage), bbs_.at(n_buffer->phi->get_incoming_block(0)));
idx_phi->addIncoming(_ret, bbs_.at(n_buffer->phi->get_incoming_block(1)));
} else
throw std::runtime_error("Should be PHINode");
};
// read_smem_idx is used by next_ptr to compute the next iteration value, so init value is 2
finalize_smem_idx(read_smem_idx_, 2);
finalize_smem_idx(write_smem_idx_, shared->get_num_stages()-1);
// finalize pointers
ir::phi_node *pn = n_buffer->phi;
BasicBlock *header = bbs_.at(pn->get_incoming_block(0));
BasicBlock *loop = bbs_.at(pn->get_incoming_block(1));
// %curr_ptr = phi %shared_pre_ptr, %next_ptr
// %next_ptr = phi %shared_pre_ptr[+1], (gep(%pre_ptr, read_smem_idx*per_stage_size))
if (auto curr_ptr = dyn_cast<PHINode>(shared_ptr_[shared])) {
curr_ptr->addIncoming(shared_pre_ptr_[shared], header);
curr_ptr->addIncoming(shared_next_ptr_[shared], loop);
} else
throw std::runtime_error("Should be PHINode");
BasicBlock *current = builder_->GetInsertBlock();
builder_->SetInsertPoint(header->getTerminator());
Value *next_ptr_header = gep(shared_pre_ptr_[shared], i32(shared->get_per_stage_elements()));
builder_->SetInsertPoint(current->getTerminator());
assert(isa<PHINode>(shared_next_ptr_[shared]));
static_cast<PHINode*>(shared_next_ptr_[shared])->addIncoming(next_ptr_header, header);
Value *lds_offset = mul(read_smem_idx_[shared], i32(shared->get_per_stage_elements()));
Value *next_ptr = gep(shared_pre_ptr_[shared], lds_offset);
static_cast<PHINode*>(shared_next_ptr_[shared])->addIncoming(next_ptr, loop);
} else if(shared->get_double_buffer()) {
auto info = *shared->get_double_buffer();
ir::phi_node *phi = info.phi;
PHINode *ptr = (PHINode*)shmems_[phi];