[CODEGEN] Performance improvement on A100 (#125)

Improved codegen for the Ampere GPUs.

    * Make the layout pass recognize the multistage pipelined pattern.
    * Now the pipeline pass can automate the multistage pipelining transformation.
    * Remove extra barriers (from the prefetch pass & WAR) on Ampere.
    * Update the code generator (generator.cc) to make Triton generate n-buffered shared memory loads/stores.
This commit is contained in:
daadaada
2021-06-21 14:25:13 +08:00
committed by Philippe Tillet
parent 5a51f3e529
commit d8d6b715c8
21 changed files with 855 additions and 174 deletions

View File

@@ -27,7 +27,7 @@ def test_matmul(MODE, TRANS_A, TRANS_B, BLOCK, DTYPE, Z=3, H=2, M=512, N=384, K=
op = triton.ops.blocksparse.matmul(layout, BLOCK, MODE, trans_a=TRANS_A, trans_b=TRANS_B)
ra = triton.testing.sparsify_tensor(a, layout, BLOCK) if MODE == "dsd" else a
rb = triton.testing.sparsify_tensor(b, layout, BLOCK) if MODE == "dds" else b
rc = op(ra, rb)
rc = triton.testing.catch_oor(lambda : op(ra, rb), pytest)
# torch result
ta = triton.testing.mask_tensor(a, layout, BLOCK) if MODE == "dsd" else a
tb = triton.testing.mask_tensor(b, layout, BLOCK) if MODE == "dds" else b