[CODEGEN] Performance improvement on A100 (#125)
Improved codegen for the Ampere GPUs. * Make the layout pass recognize the multistage pipelined pattern. * Now the pipeline pass can automate the multistage pipelining transformation. * Remove extra barriers (from the prefetch pass & WAR) on Ampere. * Update the code generator (generator.cc) to make Triton generate n-buffered shared memory loads/stores.
This commit is contained in:
committed by
Philippe Tillet
parent
5a51f3e529
commit
d8d6b715c8
@@ -407,13 +407,14 @@ class CodeGenerator(ast.NodeVisitor):
|
||||
|
||||
|
||||
class Binary:
|
||||
def __init__(self, module, kernel, num_warps, shared_mem, ir_asm):
|
||||
def __init__(self, module, kernel, num_warps, num_stages, shared_mem, ir_asm):
|
||||
# cache ir asm
|
||||
self.ir_asm = ir_asm
|
||||
self.module = module
|
||||
self.kernel = kernel
|
||||
self.shared_mem = shared_mem
|
||||
self.num_warps = num_warps
|
||||
self.num_stages = num_stages
|
||||
self.sass = None
|
||||
|
||||
def asm(self, mode):
|
||||
@@ -447,6 +448,13 @@ class CompilationError(Exception):
|
||||
self.message += '\n Error: ' + str(err)
|
||||
super().__init__(self.message)
|
||||
|
||||
class OutOfResources(Exception):
|
||||
def __init__(self, required, limit, name):
|
||||
self.message = f'out of resource: {name}'\
|
||||
f'Required: {required}'\
|
||||
f'Hardware limit: {limit}'
|
||||
super().__init__(self.message)
|
||||
|
||||
|
||||
class Kernel:
|
||||
@staticmethod
|
||||
@@ -513,7 +521,7 @@ class Kernel:
|
||||
def __init__(self, fn):
|
||||
self.fn = fn
|
||||
|
||||
def _compile(self, *wargs, device, attributes, constants, num_warps, **meta):
|
||||
def _compile(self, *wargs, device, attributes, constants, num_warps, num_stages, **meta):
|
||||
# explicitly set device
|
||||
torch.cuda.set_device(device.index)
|
||||
# create IR module
|
||||
@@ -535,10 +543,12 @@ class Kernel:
|
||||
raise CompilationError(self.fn.src, node, e)
|
||||
tt_device = _triton.driver.cu_device(device.index, False)
|
||||
# Compile to machine code
|
||||
mod, ker, shared_mem, ir_asm = _triton.code_gen.add_passes_to_emit_bin(generator.module, tt_device, num_warps)
|
||||
return Binary(mod, ker, num_warps, shared_mem, ir_asm)
|
||||
mod, ker, shared_mem, ir_asm = _triton.code_gen.add_passes_to_emit_bin(generator.module, tt_device, num_warps, num_stages)
|
||||
if shared_mem > tt_device.max_shared_memory():
|
||||
raise OutOfResources(shared_mem, tt_device.max_shared_memory(), "shared memory")
|
||||
return Binary(mod, ker, num_warps, num_stages, shared_mem, ir_asm)
|
||||
|
||||
def __call__(self, *wargs, grid, num_warps=4, **meta):
|
||||
def __call__(self, *wargs, grid, num_warps=4, num_stages=2, **meta):
|
||||
# device inference
|
||||
tensor_idxs = [i for i, arg in enumerate(wargs) if hasattr(arg, 'data_ptr')]
|
||||
if len(tensor_idxs) == 0:
|
||||
@@ -554,12 +564,12 @@ class Kernel:
|
||||
attr_key = frozenset(attributes.items())
|
||||
meta_key = frozenset(meta.items())
|
||||
const_key = frozenset(constants.items())
|
||||
key = (device.type, device.index, types_key, attr_key, num_warps, meta_key, const_key)
|
||||
key = (device.type, device.index, types_key, attr_key, num_warps, num_stages, meta_key, const_key)
|
||||
cache = self.fn.cache
|
||||
if key not in cache:
|
||||
# compile and cache configuration if necessary
|
||||
cache[key] = self._compile(
|
||||
*wargs, device=device, attributes=attributes, num_warps=num_warps, constants=constants, **meta
|
||||
*wargs, device=device, attributes=attributes, num_warps=num_warps, num_stages=num_stages, constants=constants, **meta
|
||||
)
|
||||
# pack arguments
|
||||
fmt = ''.join(['P' if i in tensor_idxs else Kernel._type_name(arg.__class__) for i, arg in enumerate(wargs)])
|
||||
@@ -585,7 +595,7 @@ class Launcher:
|
||||
class Autotuner:
|
||||
def __init__(self, kernel, arg_names, configs, key):
|
||||
if not configs:
|
||||
self.configs = [Config(dict(), num_warps=4)]
|
||||
self.configs = [Config(dict(), num_warps=4, num_stages=2)]
|
||||
else:
|
||||
self.configs = configs
|
||||
self.key_idx = [arg_names.index(k) for k in key]
|
||||
@@ -603,7 +613,7 @@ class Autotuner:
|
||||
)
|
||||
# augment meta-parameters with tunable ones
|
||||
current = dict(meta, **config.meta)
|
||||
kernel_call = lambda: self.kernel(*args, num_warps=config.num_warps, **current)
|
||||
kernel_call = lambda: self.kernel(*args, num_warps=config.num_warps, num_stages=config.num_stages, **current)
|
||||
return triton.testing.do_bench(kernel_call)
|
||||
|
||||
def __call__(self, *args, **meta):
|
||||
@@ -616,7 +626,7 @@ class Autotuner:
|
||||
config = self.cache[key]
|
||||
else:
|
||||
config = self.configs[0]
|
||||
return self.kernel(*args, num_warps=config.num_warps, **meta, **config.meta)
|
||||
return self.kernel(*args, num_warps=config.num_warps, num_stages=config.num_stages, **meta, **config.meta)
|
||||
|
||||
|
||||
class JITFunction:
|
||||
@@ -671,9 +681,10 @@ class JITFunction:
|
||||
|
||||
|
||||
class Config:
|
||||
def __init__(self, meta, num_warps=4):
|
||||
def __init__(self, meta, num_warps=4, num_stages=2):
|
||||
self.meta = meta
|
||||
self.num_warps = num_warps
|
||||
self.num_stages = num_stages
|
||||
|
||||
|
||||
def autotune(configs, key):
|
||||
|
Reference in New Issue
Block a user