Fix v100 fp32

This commit is contained in:
Jokeren
2022-12-12 15:52:16 -08:00
parent 3a1c140385
commit d8d6b9f3f1
4 changed files with 21 additions and 26 deletions

View File

@@ -43,6 +43,8 @@ bool maybeSharedAllocationOp(Operation *op);
bool maybeAliasOp(Operation *op);
bool supportMMA(triton::DotOp op, int version);
std::string getValueOperandName(Value value, AsmState &state);
template <typename T_OUT, typename T_IN>

View File

@@ -110,6 +110,19 @@ bool maybeAliasOp(Operation *op) {
isa<tensor::InsertSliceOp>(op);
}
bool supportMMA(triton::DotOp op, int version) {
// Refer to mma section for the data type supported by Volta and Hopper
// Tensor Core in
// https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-fragment-mma-884-f16
auto aElemTy = op.a().getType().cast<RankedTensorType>().getElementType();
auto bElemTy = op.b().getType().cast<RankedTensorType>().getElementType();
return (aElemTy.isF16() && bElemTy.isF16()) ||
(aElemTy.isBF16() && bElemTy.isBF16()) ||
(aElemTy.isF32() && bElemTy.isF32() && op.allowTF32() &&
version >= 2) ||
(aElemTy.isInteger(8) && bElemTy.isInteger(8) && version >= 2);
}
std::string getValueOperandName(Value value, AsmState &state) {
std::string opName;
llvm::raw_string_ostream ss(opName);

View File

@@ -3336,9 +3336,8 @@ struct DotOpConversion : public ConvertTritonGPUOpToLLVMPattern<triton::DotOp> {
"Unsupported MMA kind found when converting DotOp to LLVM.");
}
if (op.getType().cast<RankedTensorType>().getElementType().isF32() &&
A.getType().cast<RankedTensorType>().getElementType().isF32() &&
!op.allowTF32())
// XXX: fp64 has not been tested yet. In theory, it should work.
if (!isMMA)
return convertFMADot(op, adaptor, rewriter);
llvm::report_fatal_error(
@@ -3348,33 +3347,16 @@ struct DotOpConversion : public ConvertTritonGPUOpToLLVMPattern<triton::DotOp> {
// Tell whether a DotOp support HMMA.
// This is port from the master branch, the original logic is retained.
static bool isDotHMMA(DotOp op) {
auto a = op.a();
auto b = op.b();
auto c = op.c();
auto d = op.getResult();
auto aTensorTy = a.getType().cast<RankedTensorType>();
auto bTensorTy = b.getType().cast<RankedTensorType>();
auto cTensorTy = c.getType().cast<RankedTensorType>();
auto dTensorTy = d.getType().cast<RankedTensorType>();
if (!dTensorTy.getEncoding().isa<MmaEncodingAttr>())
return false;
auto mmaLayout = dTensorTy.getEncoding().cast<MmaEncodingAttr>();
auto aElemTy = aTensorTy.getElementType();
auto bElemTy = bTensorTy.getElementType();
assert((mmaLayout.getVersion() == 1 || mmaLayout.getVersion() == 2) &&
"Unexpected MMA layout version found");
// Refer to mma section for the data type supported by Volta and Hopper
// Tensor Core in
// https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-fragment-mma-884-f16
return (aElemTy.isF16() && bElemTy.isF16()) ||
(aElemTy.isBF16() && bElemTy.isBF16()) ||
(aElemTy.isF32() && bElemTy.isF32() && op.allowTF32() &&
mmaLayout.getVersion() >= 2) ||
(aElemTy.isInteger(8) && bElemTy.isInteger(8) &&
mmaLayout.getVersion() >= 2);
return supportMMA(op, mmaLayout.getVersion());
}
// Tell whether a DotOp support HMMA by the operand type(either $a or $b).

View File

@@ -790,18 +790,16 @@ public:
if (oldRetType.getEncoding().isa<triton::gpu::MmaEncodingAttr>())
return failure();
auto A = dotOp.getOperand(0).getType().cast<RankedTensorType>();
auto B = dotOp.getOperand(1).getType().cast<RankedTensorType>();
int version = computeCapabilityToMMAVersion(computeCapability);
// for FMA, should retain the blocked layout.
if (A.getElementType().isF32() && B.getElementType().isF32() &&
!dotOp.allowTF32())
if (!supportMMA(dotOp, version))
return failure();
// get MMA encoding for the given number of warps
auto retShape = oldRetType.getShape();
auto mod = op->getParentOfType<mlir::ModuleOp>();
int numWarps = triton::gpu::TritonGPUDialect::getNumWarps(mod);
int version = computeCapabilityToMMAVersion(computeCapability);
auto newRetType = RankedTensorType::get(
retShape, oldRetType.getElementType(),