Now showing valid parameter for NN

This commit is contained in:
Philippe Tillet
2019-06-25 19:18:43 -07:00
parent 616f22c610
commit d945ce5e1b
6 changed files with 34 additions and 89 deletions

View File

@@ -5,6 +5,7 @@
#include "triton/driver/stream.h"
#include "triton/runtime/jit.h"
#include "triton/tools/bench.hpp"
#include "triton/dnn/gemm.h"
#define EIGEN_USE_GPU
#include "tensorflow/core/framework/op.h"
@@ -18,60 +19,6 @@
using namespace tensorflow;
using GPUDevice = Eigen::GpuDevice;
const char* src =
R"(
const tunable int32 TM = {64, 128};
const tunable int32 TN = {64, 128};
const tunable int32 TK = {16};
const tunable int32 GZ = {1};
void matmul(restrict read_only align(16) fp16 *A,
restrict read_only align(16) fp16 *B,
align(16) fp32 *C,
int32 M, int32 N, int32 K,
multiple_of(4) int32 lda, multiple_of(4) int32 ldb, multiple_of(4) int32 ldc,
int32 *locks, int32 grid0, int32 grid1) {
int32 rxa[TM] = get_global_range[TM](0);
int32 ryb[TN] = get_global_range[TN](1);
int32 rz = get_global_range[1](2);
int32 rka[TK] = 0 ... TK;
int32 rkb[TK] = 0 ... TK;
fp32 c[TM, TN] = 0;
fp16* pa[TM, TK] = A + rka[newaxis, :]*lda + rxa[:, newaxis];
fp16* pb[TN, TK] = B + rkb[newaxis, :]*ldb + ryb[:, newaxis];
fp16 a[TM, TK] = *pa;
fp16 b[TN, TK] = *pb;
int32 last_a = ((M*K - 1) - (TM*TK + 1)) / lda;
int32 last_b = ((K*N - 1) - (TN*TK + 1)) / ldb;
last_a = last_a / TK * TK;
last_b = last_b / TK * TK;
int32 bound = K - max(last_a, last_b);
for(int32 k = K; k > bound; k = k - TK){
pa = pa + TK*lda;
pb = pb + TK*ldb;
c = dot(a, trans(b), c);
a = *pa;
b = *pb;
}
int32 rxc[TM] = get_global_range[TM](0);
int32 ryc[TN] = get_global_range[TN](1);
for(int32 k = bound; k > 0; k = k - 1){
int1 checka[TM, 1] = rxc[:, newaxis] < M;
int1 checkb[TN, 1] = ryc[:, newaxis] < N;
fp16* pa[TM, 1] = A + (K - k)*lda + rxc[:, newaxis];
fp16* pb[TN, 1] = B + (K - k)*ldb + ryc[:, newaxis];
fp16 a[TM, 1] = checka ? *pa : 0;
fp16 b[TN, 1] = checkb ? *pb : 0;
c = dot(a, trans(b), c);
}
fp32* pc[TM, TN] = C + ryc[newaxis, :]*ldc + rxc[:, newaxis];
*pc = c;
}
)";
class BlockSparseGemmOp : public OpKernel {
public:
explicit BlockSparseGemmOp(OpKernelConstruction* context) : OpKernel(context) {
@@ -115,31 +62,21 @@ class BlockSparseGemmOp : public OpKernel {
unsigned nthreads = info.num_threads;
unsigned GZ = jit.get_int("GZ");
std::array<size_t, 3> grid = {(M + TM - 1)/TM, (N + TN - 1)/TN, GZ};
// set argument
kernel->setArg(0, *da.cu());
kernel->setArg(1, *db.cu());
kernel->setArg(2, *dc.cu());
kernel->setArg(3, M);
kernel->setArg(4, N);
kernel->setArg(5, K);
kernel->setArg(6, M);
kernel->setArg(7, N);
kernel->setArg(8, M);
kernel->setArg(9, *dlocks.cu());
kernel->setArg(10, grid[0]);
kernel->setArg(11, grid[1]);
triton::dnn::gemm::set_arg(kernel, &da, &db, &dc, M, N, K, &dlocks, grid[0], grid[1]);
stream->enqueue(kernel, grid, {nthreads, 1, 1});
stream->synchronize();
double ts = triton::tools::bench([&](){stream->enqueue(kernel, grid, {nthreads, 1, 1});},
[&](){ stream->synchronize(); }, ctx->device());
return 2.*M*N*K / ts * 1e-3;
};
std::string src = triton::dnn::gemm::src(false, false, "fp16", "fp16", 1, 1);
// just-in-time compile source-code
// jit.autotune("matmul", src, benchmark);
// jit.add_module("matmul", src, {4, 2, 8, 4, 2, 32, 1, 4, 1, 1, 8, 8, 8, 1});
// jit.add_module("matmul", src, {16, 4, 128, 16, 4, 128, 2, 2, 2, 2, 8, 32, 8, 1});
// jit.add_module("matmul", src, {8, 8, 128, 16, 8, 128, 2, 2, 2, 2, 16, 32, 8, 1 });
jit.add_module("matmul", src, {16, 4, 128, 16, 4, 128, 2, 2, 2, 2, 8, 16, 8, 1});
// jit.autotune("matmul", src.c_str(), benchmark);
// jit.add_module("matmul", src.c_str(), {4, 2, 8, 4, 2, 32, 1, 4, 1, 1, 8, 8, 8, 1});
// jit.add_module("matmul", src.c_str(), {16, 4, 128, 16, 4, 128, 2, 2, 2, 2, 8, 32, 8, 1});
// jit.add_module("matmul", src.c_str(), {8, 8, 128, 16, 8, 128, 2, 2, 2, 2, 16, 32, 8, 1 });
// jit.add_module("matmul", src.c_str(), {16, 4, 128, 16, 4, 128, 2, 2, 2, 2, 8, 16, 8, 1});
// jit.add_module("matmul", src.c_str(), {16, 2, 128, 32, 32, 2, 2, 2, 2, 8, 8, 4, 2, 1}); //NN
triton::driver::kernel* kernel = jit.get_function("matmul");
triton::jit::launch_information info = jit.get_launch_info("matmul");
std::cout << benchmark(kernel, info) << std::endl;;