[TEST] Added performance regression tests (#283)

This commit is contained in:
Philippe Tillet
2021-09-14 01:46:32 -07:00
committed by GitHub
parent 8fdd7e7ed6
commit da5063d898
3 changed files with 121 additions and 10 deletions

View File

@@ -0,0 +1,108 @@
from numpy import record
import torch
import triton
import subprocess
import sys
import pytest
#######################
# Utilities
#######################
def nvsmi(attrs):
attrs = ','.join(attrs)
cmd = ['nvidia-smi', '-i', '0', '--query-gpu=' + attrs, '--format=csv,noheader,nounits']
out = subprocess.check_output(cmd)
ret = out.decode(sys.stdout.encoding).split(',')
ret = [int(x) for x in ret]
return ret
#######################
# Matrix Multiplication
#######################
matmul_data = {
# square
(256 , 256 , 256 ) : {'v100': 0.027},
(512 , 512 , 512 ) : {'v100': 0.141},
(1024, 1024, 1024 ) : {'v100': 0.466},
(2048, 2048, 2048 ) : {'v100': 0.680},
(4096, 4096, 4096 ) : {'v100': 0.831},
(8192, 8192, 8192 ) : {'v100': 0.841},
# tall-skinny
(16 , 1024, 1024 ) : {'v100': 0.0128},
(16 , 4096, 4096 ) : {'v100': 0.0558},
(16 , 8192, 8192 ) : {'v100': 0.101},
(64 , 1024, 1024 ) : {'v100': 0.049},
(64 , 4096, 4096 ) : {'v100': 0.211},
(64 , 8192, 8192 ) : {'v100': 0.360},
(1024, 64 , 1024 ) : {'v100': 0.0469},
(4096, 64 , 4096 ) : {'v100': 0.198},
(8192, 64 , 8192 ) : {'v100': 0.323},
# # deep reductions
# (64 , 64 , 16384) : {'v100': 0.},
# (64 , 64 , 65536) : {'v100': 0.},
# (256 , 256 , 8192 ) : {'v100': 0.},
# (256 , 256 , 32768) : {'v100': 0.},
}
@pytest.mark.parametrize('M, N, K', matmul_data.keys())
def test_matmul(M, N, K):
ref_gpu_util = matmul_data[(M, N, K)]['v100']
cur_sm_clock = nvsmi(['clocks.current.sm'])[0]
ref_sm_clock = 1350
max_gpu_perf = 1e-6*80*8*128*cur_sm_clock
assert cur_sm_clock == ref_sm_clock, f'GPU SMs must run at {ref_sm_clock} MHz'
a = torch.randn((M, K), dtype=torch.float16, device='cuda')
b = torch.randn((K, N), dtype=torch.float16, device='cuda')
fn = lambda: triton.ops.matmul(a, b)
ms = triton.testing.do_bench(fn, percentiles=None, warmup=10, rep=1000)
cur_gpu_perf = 2.*M*N*K/ms * 1e-9
cur_gpu_util = cur_gpu_perf / max_gpu_perf
triton.testing.assert_almost_equal(cur_gpu_util, ref_gpu_util, decimal=2)
#######################
# Element-Wise
#######################
import triton.language as tl
@triton.jit
def _add(x_ptr, y_ptr, output_ptr, n_elements, **meta):
BLOCK_SIZE = meta['BLOCK_SIZE']
pid = tl.program_id(axis=0)
block_start = pid * BLOCK_SIZE
offsets = block_start + tl.arange(0, BLOCK_SIZE)
mask = offsets < n_elements
x = tl.load(x_ptr + offsets, mask=mask)
y = tl.load(y_ptr + offsets, mask=mask)
output = x + y
tl.store(output_ptr + offsets, output, mask=mask)
elementwise_data = {
1024*16 : {'v100': 0.0219},
1024*64 : {'v100': 0.0791},
1024*256 : {'v100': 0.243},
1024*1024 : {'v100': 0.534},
1024*4096 : {'v100': 0.796},
1024*16384: {'v100': 0.905},
1024*65536: {'v100': 0.939},
}
@pytest.mark.parametrize('N', elementwise_data.keys())
def test_elementwise(N):
ref_gpu_util = elementwise_data[N]['v100']
cur_mem_clock = nvsmi(['clocks.current.memory'])[0]
ref_mem_clock = 877
max_gpu_perf = 512*2*ref_mem_clock*1e-3
assert cur_mem_clock == ref_mem_clock, f'GPU memmory must run at {ref_mem_clock} MHz'
z = torch.empty((N, ), dtype=torch.float16, device='cuda')
x = torch.randn_like(z)
y = torch.randn_like(z)
grid = lambda meta: (triton.cdiv(N, meta['BLOCK_SIZE']), )
fn = lambda: _add[grid](x, y, z, N, BLOCK_SIZE=1024)
ms = triton.testing.do_bench(fn, percentiles=None, warmup=10, rep=250)
cur_gpu_perf = 3.*N*z.element_size()/ms*1e-6
cur_gpu_util = cur_gpu_perf / max_gpu_perf
triton.testing.assert_almost_equal(cur_gpu_util, ref_gpu_util, decimal=2)