[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2022-07-16 00:49:55 +00:00
parent ca34df1084
commit dadcd858ad
165 changed files with 298 additions and 298 deletions

View File

@@ -324,13 +324,13 @@ for different problem sizes.</p>
0 4096.0 9.600000 9.600000
1 8192.0 19.200000 19.200000
2 16384.0 38.400001 38.400001
3 32768.0 76.800002 63.999998
3 32768.0 76.800002 76.800002
4 65536.0 127.999995 127.999995
5 131072.0 219.428568 219.428568
6 262144.0 341.333321 341.333321
6 262144.0 341.333321 384.000001
7 524288.0 472.615390 472.615390
8 1048576.0 614.400016 614.400016
9 2097152.0 722.823517 702.171410
9 2097152.0 722.823517 722.823517
10 4194304.0 780.190482 780.190482
11 8388608.0 812.429770 812.429770
12 16777216.0 833.084721 833.084721
@@ -339,7 +339,7 @@ for different problem sizes.</p>
15 134217728.0 849.737435 850.656574
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 44.433 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 41.667 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>

View File

@@ -374,17 +374,17 @@ We will then compare its performance against (1) <code class="code docutils lite
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 512.000001 512.000001 186.181817
0 256.0 512.000001 512.000001 188.321838
1 384.0 585.142862 585.142862 153.600004
2 512.0 655.360017 585.142849 154.566038
3 640.0 682.666684 640.000002 158.759699
4 768.0 702.171410 664.216187 162.754967
2 512.0 655.360017 606.814814 154.566038
3 640.0 682.666684 640.000002 160.000000
4 768.0 722.823517 664.216187 162.754967
.. ... ... ... ...
93 12160.0 813.207932 406.179533 198.936606
94 12288.0 812.429770 415.222812 199.197579
95 12416.0 812.498981 412.149375 198.854847
96 12544.0 812.566838 412.971190 199.111113
97 12672.0 812.633240 412.097543 199.167004
93 12160.0 814.058574 406.179533 198.834951
94 12288.0 814.111783 415.661740 199.197579
95 12416.0 812.498981 412.149375 198.805107
96 12544.0 812.566838 412.546756 199.111113
97 12672.0 812.633240 412.097543 199.069228
[98 rows x 4 columns]
</pre></div>
@@ -397,7 +397,7 @@ We will then compare its performance against (1) <code class="code docutils lite
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 22.736 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 21.183 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>

View File

@@ -571,39 +571,39 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
0 256.0 2.730667 ... 2.978909 2.978909
1 384.0 7.372800 ... 8.507077 7.899428
2 512.0 14.563555 ... 15.420235 15.420235
3 640.0 22.260869 ... 24.380953 24.380953
3 640.0 22.260869 ... 24.380953 23.272727
4 768.0 32.768000 ... 34.028308 34.028308
5 896.0 39.025776 ... 40.140799 39.025776
6 1024.0 49.932191 ... 52.428801 52.428801
6 1024.0 51.150050 ... 52.428801 52.428801
7 1152.0 45.242181 ... 46.656000 46.656000
8 1280.0 51.200001 ... 56.888887 56.109587
9 1408.0 64.138541 ... 66.485074 66.485074
9 1408.0 64.138541 ... 67.305878 66.485074
10 1536.0 80.430545 ... 79.526831 78.643199
11 1664.0 62.929456 ... 62.492442 62.061463
11 1664.0 63.372618 ... 62.492442 62.061463
12 1792.0 72.983276 ... 72.047592 71.588687
13 1920.0 68.776119 ... 70.172588 70.172588
14 2048.0 73.584279 ... 76.959706 76.608294
15 2176.0 83.155572 ... 85.998493 85.269692
16 2304.0 68.056616 ... 76.809875 76.563695
17 2432.0 71.125224 ... 85.134737 84.621881
18 2560.0 78.019048 ... 81.310171 80.908642
19 2688.0 83.552988 ... 89.888756 89.676257
20 2816.0 83.392363 ... 83.392363 82.759409
21 2944.0 82.784108 ... 82.646820 82.921853
22 3072.0 82.540970 ... 88.473602 87.246694
23 3200.0 83.009080 ... 94.534716 94.955488
24 3328.0 83.226931 ... 84.397770 84.795401
25 3456.0 81.932484 ... 85.133652 86.876687
26 3584.0 87.211821 ... 98.591437 92.410473
27 3712.0 85.019017 ... 88.600751 86.791782
28 3840.0 84.940091 ... 91.473945 88.332269
29 3968.0 93.112506 ... 82.953048 81.079024
30 4096.0 92.500158 ... 83.467926 85.353087
13 1920.0 69.120002 ... 70.172588 70.172588
14 2048.0 73.584279 ... 77.314362 76.608294
15 2176.0 83.500614 ... 85.998493 85.269692
16 2304.0 68.251065 ... 76.809875 76.809875
17 2432.0 71.305746 ... 74.918570 84.877538
18 2560.0 77.833728 ... 80.908642 80.908642
19 2688.0 83.186525 ... 89.464755 89.888756
20 2816.0 84.035084 ... 81.521884 83.233226
21 2944.0 81.967162 ... 82.509987 82.509987
22 3072.0 82.661468 ... 87.516392 88.060814
23 3200.0 84.880639 ... 94.674553 94.256261
24 3328.0 80.617354 ... 84.795401 85.297742
25 3456.0 81.271743 ... 85.858966 90.382926
26 3584.0 86.540320 ... 98.808123 92.505546
27 3712.0 83.247783 ... 87.860458 85.785610
28 3840.0 84.744825 ... 85.996889 88.757620
29 3968.0 91.954739 ... 91.816356 84.797731
30 4096.0 93.924229 ... 92.884244 90.933423
[31 rows x 5 columns]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 18.852 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 27.970 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>

View File

@@ -195,35 +195,35 @@ to download the full example code</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>layer-norm-backward:
N Triton Torch Apex
0 1024.0 307.200008 99.096776 307.200008
1 1536.0 351.085717 133.083026 335.127270
2 2048.0 420.102553 161.684218 336.657521
3 2560.0 461.954908 182.857144 326.808501
4 3072.0 511.999982 191.005181 317.793096
5 3584.0 551.384634 207.768111 307.199992
6 4096.0 568.231237 220.412561 293.444785
7 4608.0 495.928261 231.364016 290.267724
8 5120.0 525.128191 242.845844 285.767451
9 5632.0 536.380957 243.107920 290.683877
10 6144.0 542.117638 248.242431 285.767458
11 6656.0 527.207907 256.000009 286.279570
12 7168.0 505.976473 261.844750 288.160801
13 7680.0 481.253256 260.707203 277.590365
14 8192.0 459.364487 268.957600 286.183409
15 8704.0 416.127506 267.472468 284.987724
16 9216.0 428.651187 272.729961 289.507855
17 9728.0 438.857162 280.278512 288.950501
18 10240.0 446.836366 286.433562 290.153487
19 10752.0 429.364408 246.464170 289.941565
1 1536.0 351.085717 133.083026 339.760379
2 2048.0 423.724127 162.217818 336.657521
3 2560.0 461.954908 182.857144 330.322572
4 3072.0 511.999982 191.501303 320.556515
5 3584.0 554.941930 207.768111 309.410081
6 4096.0 568.231237 220.412561 297.890900
7 4608.0 498.162157 231.364016 287.251954
8 5120.0 525.128191 242.845844 283.787523
9 5632.0 538.517949 243.107920 291.310338
10 6144.0 542.117638 248.661056 286.322318
11 6656.0 527.207907 256.410903 286.279570
12 7168.0 505.976473 262.243907 288.644296
13 7680.0 482.513091 260.338991 276.756754
14 8192.0 460.440290 268.957600 286.600589
15 8704.0 416.958106 267.472468 284.987724
16 9216.0 428.651187 273.066667 289.507855
17 9728.0 438.857162 280.615388 288.950501
18 10240.0 446.836366 286.767793 290.153487
19 10752.0 429.364408 246.464170 290.267711
20 11264.0 429.104745 245.091565 285.767446
21 11776.0 421.198220 249.227509 288.686414
22 12288.0 419.504980 254.453844 294.911986
23 12800.0 415.135142 253.465340 289.811310
24 13312.0 412.242569 252.559690 290.179836
21 11776.0 421.198220 249.447482 288.686414
22 12288.0 420.102570 254.453844 294.911986
23 12800.0 415.135142 253.465340 289.948079
24 13312.0 412.242569 252.559690 289.916513
25 13824.0 404.604870 257.190689 292.571423
26 14336.0 397.761846 254.673567 286.481278
27 14848.0 383.999990 257.108233 289.012175
28 15360.0 374.253788 257.610071 287.326580
29 15872.0 366.629453 262.708969 291.229369
26 14336.0 397.761846 254.862216 286.481278
27 14848.0 384.414233 257.108233 289.246765
28 15360.0 374.253788 257.790220 288.225185
29 15872.0 366.629453 262.890274 291.229369
</pre></div>
</div>
<div class="line-block">
@@ -477,7 +477,7 @@ to download the full example code</p>
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 11.720 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 12.660 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>

View File

@@ -174,7 +174,7 @@
<div class="section" id="computation-times">
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline"></a></h1>
<p><strong>12:37.752</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<p><strong>12:43.491</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 85%" />
@@ -183,19 +183,19 @@
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
<td><p>05:18.852</p></td>
<td><p>05:27.970</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
<td><p>03:22.736</p></td>
<td><p>03:21.183</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">Layer Normalization</span></a> (<code class="docutils literal notranslate"><span class="pre">05-layer-norm.py</span></code>)</p></td>
<td><p>02:11.720</p></td>
<td><p>02:12.660</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
<td><p>01:44.433</p></td>
<td><p>01:41.667</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>