[GENERAL] Improved caching mechanism:
* Now computing hash in libtriton * Now only compiling a single pytorch hook per function signature
This commit is contained in:
committed by
Philippe Tillet
parent
30f77e9ec5
commit
dfb844bf41
@@ -74,6 +74,7 @@ public:
|
||||
cu_module(driver::context* context, std::unique_ptr<llvm::Module> module);
|
||||
cu_module(driver::context* context, const std::string& source);
|
||||
std::unique_ptr<buffer> symbol(const char * name) const;
|
||||
const std::string& source() const { return source_; }
|
||||
|
||||
private:
|
||||
std::string source_;
|
||||
|
@@ -7,6 +7,9 @@
|
||||
#include <stdexcept>
|
||||
|
||||
namespace triton{
|
||||
namespace ir{
|
||||
class type;
|
||||
}
|
||||
|
||||
namespace driver{
|
||||
class buffer;
|
||||
@@ -26,6 +29,9 @@ enum arg_type {
|
||||
BUFFER_T
|
||||
};
|
||||
|
||||
arg_type convert(ir::type *ty);
|
||||
|
||||
|
||||
inline size_t size_of(arg_type ty){
|
||||
switch(ty){
|
||||
case INT1_T: return 1;
|
||||
|
@@ -8,6 +8,7 @@
|
||||
#include <string>
|
||||
#include <memory>
|
||||
#include <functional>
|
||||
#include <set>
|
||||
// codegen
|
||||
#include "triton/ir/context.h"
|
||||
#include "triton/codegen/target.h"
|
||||
@@ -68,6 +69,11 @@ public:
|
||||
T D(const std::string& name) const {
|
||||
return convert<T>(defines.at(name));
|
||||
}
|
||||
bool operator<(const options_t& other) const {
|
||||
return std::make_pair(defines, num_warps) <
|
||||
std::make_pair(other.defines, other.num_warps);
|
||||
}
|
||||
std::string to_str() const;
|
||||
|
||||
std::map<std::string, std::string> defines;
|
||||
size_t num_warps;
|
||||
@@ -79,41 +85,63 @@ public:
|
||||
private:
|
||||
class caller {
|
||||
public:
|
||||
caller(ir::function *ir, std::shared_ptr<driver::module> program, const options_t& opt_);
|
||||
void operator()(driver::stream *stream, const grid_t& grid, const std::vector<arg>& args) const;
|
||||
// constructors
|
||||
caller(driver::context* ctx, std::ifstream& ifs, const options_t& opt);
|
||||
caller(ir::function *ir, std::shared_ptr<driver::module> program, const options_t& opt);
|
||||
// serialization
|
||||
void write(std::ofstream& ofs);
|
||||
void read(driver::context* ctx, std::ifstream& ifs);
|
||||
// accessors
|
||||
const options_t opt() const { return opt_; }
|
||||
const driver::module* parent() const { return &*parent_; }
|
||||
// entry points
|
||||
void operator()(driver::stream *stream, const grid_t& grid, const std::vector<arg>& args) const;
|
||||
|
||||
private:
|
||||
std::shared_ptr<driver::kernel> bin_;
|
||||
std::shared_ptr<driver::module> parent_;
|
||||
std::vector<arg_type> param_tys_;
|
||||
options_t opt_;
|
||||
std::string name_;
|
||||
};
|
||||
|
||||
private:
|
||||
typedef std::pair<driver::device*, std::vector<int64_t>> cache_key_t;
|
||||
|
||||
private:
|
||||
// cache
|
||||
static std::string get_cache_prefix();
|
||||
// make
|
||||
triton::lang::translation_unit *make_ast(const std::string &src);
|
||||
std::unique_ptr<ir::module> make_ir(Parser &parser);
|
||||
std::unique_ptr<driver::module> make_bin(ir::module &function, driver::context *context, const options_t &opt);
|
||||
caller autotune(driver::stream *stream, const grid_fn_ty& grid, const std::vector<arg> &args);
|
||||
caller *make(driver::stream *stream, options_t opt);
|
||||
void precompile(driver::stream *stream, const options_space_t& tuning_space);
|
||||
// autotune
|
||||
function::cache_key_t get_key(driver::stream *stream, const std::vector<arg>& args);
|
||||
caller* autotune(driver::stream *stream, const grid_fn_ty& grid, const std::vector<arg> &args);
|
||||
|
||||
public:
|
||||
static std::string preheader();
|
||||
|
||||
public:
|
||||
function(const std::string& src, const options_space_t& opt = options_space_t());
|
||||
function(const std::string& src, const options_space_t& opt, const std::string &cache_ref = "");
|
||||
void operator()(const std::vector<arg>& args, const grid_t& grid, driver::stream* stream);
|
||||
void operator()(const std::vector<arg>& args, const grid_fn_ty& grid, driver::stream *stream);
|
||||
void set_cst(const std::string& name, void* data, size_t n_bytes);
|
||||
|
||||
private:
|
||||
std::map<std::string, std::vector<char>> cst_;
|
||||
// pre-compilation
|
||||
ir::context ctx_;
|
||||
std::string src_;
|
||||
options_space_t opt_space_;
|
||||
std::map<cache_key_t, caller> cache_;
|
||||
std::map<std::string, std::vector<char>> cst_;
|
||||
options_space_t opt_;
|
||||
std::set<options_t> compiled_;
|
||||
std::map<options_t, std::unique_ptr<caller>> callers_;
|
||||
// caching
|
||||
std::string cache_ref_;
|
||||
std::string cache_path_;
|
||||
std::map<cache_key_t, caller*> cache_;
|
||||
};
|
||||
|
||||
}
|
||||
|
@@ -61,6 +61,14 @@ namespace tools
|
||||
return (status==0 || errno==EEXIST)?0:-1;
|
||||
}
|
||||
|
||||
inline int mtime(std::string const & path)
|
||||
{
|
||||
struct stat st;
|
||||
if(stat(path.c_str(), &st) != 0)
|
||||
return 0;
|
||||
return st.st_mtime;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
@@ -253,11 +253,11 @@ std::string cu_module::compile_llvm_module(std::unique_ptr<llvm::Module> module,
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
cu_module::cu_module(driver::context * context, std::unique_ptr<llvm::Module> ll_module): cu_module(context, compile_llvm_module(std::move(ll_module), context->device())) { }
|
||||
|
||||
cu_module::cu_module(driver::context * context, std::string const & source) : module(context, CUmodule(), true), source_(source){
|
||||
cu_context::context_switcher ctx(*context);
|
||||
// std::cout << source << std::endl;
|
||||
// JIT compile source-code
|
||||
CUjit_option opt[] = {CU_JIT_ERROR_LOG_BUFFER_SIZE_BYTES, CU_JIT_ERROR_LOG_BUFFER};
|
||||
unsigned int errbufsize = 8096;
|
||||
@@ -266,10 +266,10 @@ cu_module::cu_module(driver::context * context, std::string const & source) : mo
|
||||
try{
|
||||
dispatch::cuModuleLoadDataEx(&*cu_, source_.data(), 2, opt, optval);
|
||||
}catch(exception::cuda::base const &){
|
||||
//#ifdef TRITON_LOG_PTX_ERROR
|
||||
#ifdef TRITON_LOG_PTX_ERROR
|
||||
std::cerr << "Compilation Failed! Log: " << std::endl;
|
||||
std::cerr << errbuf << std::endl;
|
||||
//#endif
|
||||
#endif
|
||||
throw;
|
||||
}
|
||||
}
|
||||
|
@@ -28,24 +28,28 @@
|
||||
#include "triton/ir/function.h"
|
||||
#include "triton/ir/print.h"
|
||||
#include "triton/tools/bench.hpp"
|
||||
#include "triton/tools/sha1.hpp"
|
||||
#include "triton/tools/sys/getenv.hpp"
|
||||
#include "triton/tools/sys/mkdir.hpp"
|
||||
#include "llvm/IR/Module.h"
|
||||
#include <mutex>
|
||||
#include <fstream>
|
||||
|
||||
std::mutex mut;
|
||||
|
||||
namespace triton{
|
||||
namespace runtime {
|
||||
|
||||
// helpers
|
||||
void _parallel_loop_nest(std::vector<size_t> const & ranges,
|
||||
std::function<void(std::vector<size_t> const &)> const & f,
|
||||
size_t nthreads){
|
||||
/* --------------------- */
|
||||
/* HELPERS */
|
||||
/* --------------------- */
|
||||
|
||||
void _loop_nest(std::vector<size_t> const & ranges,
|
||||
std::function<void(std::vector<size_t> const &)> const & f){
|
||||
size_t D = ranges.size();
|
||||
std::vector<size_t> values(D, 0);
|
||||
// Start with innermost loop
|
||||
size_t i = D - 1;
|
||||
while(true){
|
||||
// Execute function
|
||||
f(values);
|
||||
while(values[i]++ == ranges[i] - 1){
|
||||
if(i == 0)
|
||||
@@ -56,24 +60,31 @@ void _parallel_loop_nest(std::vector<size_t> const & ranges,
|
||||
}
|
||||
}
|
||||
|
||||
template<class T>
|
||||
void _parallel_loop_nest(std::vector<std::vector<T>> const & iterates, std::function<void(std::vector<T>)> const & f, size_t nthreads){
|
||||
//Ranges to iterate over
|
||||
std::vector<size_t> ranges;
|
||||
for(auto const & x: iterates)
|
||||
ranges.push_back(x.size());
|
||||
//Proxy function
|
||||
auto proxy = [&](std::vector<size_t> const & idx){
|
||||
std::vector<T> x(iterates.size());
|
||||
for(size_t i = 0; i < x.size(); ++i)
|
||||
x[i] = iterates[i][idx[i]];
|
||||
f(x);
|
||||
};
|
||||
//Iterate
|
||||
_parallel_loop_nest(ranges, proxy, nthreads);
|
||||
|
||||
/* --------------------- */
|
||||
/* OPTIONS */
|
||||
/* --------------------- */
|
||||
|
||||
std::string function::options_t::to_str() const{
|
||||
std::string ret = "nw-" + std::to_string(num_warps);
|
||||
for(const auto& x : defines){
|
||||
ret += '-';
|
||||
ret += x.first;
|
||||
ret += '-';
|
||||
ret += x.second;
|
||||
}
|
||||
// legalize
|
||||
for(char& x: ret){
|
||||
if(x == ' ' || x == '^' || x == ',' || x == ':')
|
||||
x = '_';
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
// caller
|
||||
|
||||
/* --------------------- */
|
||||
/* CALLER OBJECT */
|
||||
/* --------------------- */
|
||||
|
||||
arg_type convert(ir::type *ty) {
|
||||
if(ty->is_integer_ty(1))
|
||||
@@ -97,8 +108,46 @@ arg_type convert(ir::type *ty) {
|
||||
throw std::runtime_error("unknown type");
|
||||
}
|
||||
|
||||
function::caller::caller(ir::function *ir, std::shared_ptr<driver::module> parent, const options_t& opt)
|
||||
: bin_(driver::kernel::create(&*parent, ir->get_name().c_str())), parent_(parent), opt_(opt) {
|
||||
void function::caller::write(std::ofstream &ofs) {
|
||||
// write name
|
||||
ofs << name_ << std::endl;
|
||||
// write signature
|
||||
for(size_t i = 0; i < param_tys_.size(); i++)
|
||||
ofs << param_tys_[i] << " ";
|
||||
ofs << std::endl;
|
||||
// write module
|
||||
std::string source = ((driver::cu_module*)(&*parent_))->source();
|
||||
ofs << source;
|
||||
}
|
||||
|
||||
void function::caller::read(driver::context* ctx, std::ifstream &ifs) {
|
||||
// read name
|
||||
std::getline(ifs, name_);
|
||||
// read signature
|
||||
std::string line;
|
||||
std::getline(ifs, line);
|
||||
std::istringstream current(line);
|
||||
int param;
|
||||
param_tys_.clear();
|
||||
while(current >> param)
|
||||
param_tys_.push_back((arg_type)param);
|
||||
// read module
|
||||
std::string src((std::istreambuf_iterator<char>(ifs)),
|
||||
std::istreambuf_iterator<char>());
|
||||
parent_.reset(new driver::cu_module(ctx, src));
|
||||
bin_.reset(driver::kernel::create(&*parent_, name_.c_str()));
|
||||
|
||||
}
|
||||
|
||||
function::caller::caller(driver::context* ctx, std::ifstream &ifs, const options_t& opt)
|
||||
: opt_(opt) {
|
||||
read(ctx, ifs);
|
||||
}
|
||||
|
||||
function::caller::caller(ir::function *ir,
|
||||
std::shared_ptr<driver::module> parent, const options_t& opt)
|
||||
: parent_(parent), opt_(opt), name_(ir->get_name()) {
|
||||
bin_.reset(driver::kernel::create(&*parent, name_.c_str()));
|
||||
// extract signature
|
||||
ir::function_type* ty = ir->get_fn_type();
|
||||
for(size_t i = 0; i < ty->get_num_params(); i++)
|
||||
@@ -109,6 +158,7 @@ function::caller::caller(ir::function *ir, std::shared_ptr<driver::module> paren
|
||||
void function::caller::operator ()(driver::stream *stream, const grid_t& _grid, const std::vector<arg>& args) const {
|
||||
if(args.size() != param_tys_.size())
|
||||
throw std::runtime_error("invalid number of arguments");
|
||||
// set arguments
|
||||
for(size_t i = 0; i < args.size(); i++){
|
||||
arg arg_i = args.at(i);
|
||||
arg_type ty = arg_i.type();
|
||||
@@ -119,99 +169,33 @@ void function::caller::operator ()(driver::stream *stream, const grid_t& _grid,
|
||||
else
|
||||
bin_->setArg(i, size_of(ty), arg_i.data());
|
||||
}
|
||||
// sanity check
|
||||
// set grid
|
||||
if(_grid.size() > 3)
|
||||
throw std::runtime_error("grid size must be no greater than 3");
|
||||
std::array<size_t, 3> grid;
|
||||
for(size_t i = 0; i < 3; i++)
|
||||
grid[i] = (i < _grid.size()) ? _grid[i] : 1;
|
||||
// enqueue
|
||||
stream->enqueue(&*bin_, grid, {opt_.num_warps * 32, 1, 1});
|
||||
}
|
||||
|
||||
|
||||
/* --------------------- */
|
||||
/* FUNCTION */
|
||||
/* --------------------- */
|
||||
|
||||
// create Triton-IR from AST
|
||||
std::unique_ptr<ir::module> function::make_ir(Parser& parser) {
|
||||
// create Triton-IR from AST
|
||||
ir::module* module = new ir::module("", ctx_);
|
||||
Generator gen(&parser);
|
||||
gen.Gen(module);
|
||||
return std::unique_ptr<ir::module>(module);
|
||||
}
|
||||
|
||||
|
||||
function::caller function::autotune(driver::stream* stream, const grid_fn_ty& grid_fn,
|
||||
const std::vector<arg>& args) {
|
||||
|
||||
// all tuning parameters are strings
|
||||
std::vector<std::string> num_warps;
|
||||
for(size_t i: opt_space_.num_warps)
|
||||
num_warps.push_back(std::to_string(i));
|
||||
std::vector<std::vector<std::string>> space;
|
||||
space.push_back(num_warps);
|
||||
for(const auto& i: opt_space_.defines)
|
||||
space.push_back(i.second);
|
||||
|
||||
// exhaustive search
|
||||
double best_ts = INFINITY;
|
||||
std::unique_ptr<caller> ret;
|
||||
|
||||
auto benchmark = [&](std::vector<std::string> params) {
|
||||
// extract options
|
||||
options_t opt;
|
||||
unsigned i = 0;
|
||||
opt.num_warps = std::stoi(params[i++]);
|
||||
for(auto it: opt_space_.defines){
|
||||
opt.defines[it.first] = params[i++];
|
||||
}
|
||||
// pre-process
|
||||
TokenSequence tokens;
|
||||
Preprocessor cpp(&src_, true);
|
||||
for(auto it: opt_space_.defines)
|
||||
cpp.AddMacro(it.first, &opt.defines.at(it.first));
|
||||
cpp.Process(tokens);
|
||||
|
||||
// parse
|
||||
Parser parser(tokens);
|
||||
parser.Parse();
|
||||
// triton-ir code-gen
|
||||
auto ir = make_ir(parser);
|
||||
// binary code-gen
|
||||
std::unique_ptr<driver::module> bin;
|
||||
try{
|
||||
bin = make_bin(*ir, stream->context(), opt);
|
||||
}catch(const std::runtime_error& e){
|
||||
return;
|
||||
}
|
||||
// kernel uses too much resources
|
||||
if(!bin)
|
||||
return;
|
||||
// copy constants
|
||||
std::unique_ptr<driver::buffer> buffer;
|
||||
for(ir::alloc_const* alloc: ir->allocs()){
|
||||
std::string name = alloc->get_name();
|
||||
auto it = cst_.find(name);
|
||||
if(it == cst_.end())
|
||||
throw std::runtime_error("constant not set before execution");
|
||||
buffer = bin->symbol(name.c_str());
|
||||
stream->write(&*buffer, true, 0, it->second);
|
||||
}
|
||||
// benchmark
|
||||
ir::function *tmp = ir->get_function_list()[0];
|
||||
caller call(tmp, std::move(bin), opt);
|
||||
double ts = tools::bench([&]() { call(stream, grid_fn(opt), args); }, stream, true);
|
||||
// save best
|
||||
if(ts < best_ts) {
|
||||
best_ts = ts;
|
||||
ret.reset(new caller(call));
|
||||
}
|
||||
};
|
||||
_parallel_loop_nest<std::string>(space, benchmark, 1);
|
||||
if(!ret)
|
||||
throw std::runtime_error("could not find valid option in provided space");
|
||||
return *ret;
|
||||
}
|
||||
|
||||
|
||||
std::unique_ptr<driver::module> function::make_bin(ir::module &module, driver::context *context, const options_t& opt) {
|
||||
// create Binary from Triton-IR
|
||||
std::unique_ptr<driver::module> function::make_bin(ir::module &module,
|
||||
driver::context *context,
|
||||
const options_t& opt) {
|
||||
std::unique_ptr<codegen::target> target = context->device()->make_target();
|
||||
// generate llvm code
|
||||
llvm::LLVMContext ctx;
|
||||
@@ -236,8 +220,6 @@ std::unique_ptr<driver::module> function::make_bin(ir::module &module, driver::c
|
||||
dce.run(module);
|
||||
peephole.run(module);
|
||||
dce.run(module);
|
||||
// ir::print(module, std::cout);
|
||||
// exit(EXIT_FAILURE);
|
||||
align.run(module);
|
||||
cts.run(module);
|
||||
axes.run(module);
|
||||
@@ -258,16 +240,135 @@ std::unique_ptr<driver::module> function::make_bin(ir::module &module, driver::c
|
||||
return std::unique_ptr<driver::module>();
|
||||
barriers.run(module);
|
||||
isel.visit(module, *llvm);
|
||||
// return binary
|
||||
std::unique_ptr<driver::module> res(driver::module::create(context, std::move(llvm)));
|
||||
// done
|
||||
// exit(EXIT_FAILURE);
|
||||
return res;
|
||||
}
|
||||
|
||||
|
||||
// create Binary from options
|
||||
function::caller* function::make(driver::stream *stream, options_t opt) {
|
||||
// cache path
|
||||
std::string cache_path = cache_path_ + opt.to_str() + ".ptx";
|
||||
int ref_mtime = tools::mtime(cache_ref_);
|
||||
int ptx_mtime = tools::mtime(cache_path);
|
||||
// if cached ptx is newer than reference library
|
||||
if(!ref_mtime || !ptx_mtime || ref_mtime < ptx_mtime){
|
||||
std::ifstream ifs(cache_path);
|
||||
// file is empty -- invalid
|
||||
if(ifs && ifs.peek() == std::ifstream::traits_type::eof())
|
||||
return nullptr;
|
||||
// load cached caller
|
||||
if(ifs)
|
||||
return new caller(stream->context(), ifs, opt);
|
||||
}
|
||||
// pre-process
|
||||
TokenSequence tokens;
|
||||
Preprocessor cpp(&src_, true);
|
||||
for(auto it: opt.defines)
|
||||
cpp.AddMacro(it.first, &it.second);
|
||||
cpp.Process(tokens);
|
||||
// src -> ast
|
||||
Parser parser(tokens);
|
||||
parser.Parse();
|
||||
// ast -> triton-ir
|
||||
auto ir = make_ir(parser);
|
||||
// triton-ir -> binary
|
||||
std::unique_ptr<driver::module> bin;
|
||||
try{
|
||||
bin = make_bin(*ir, stream->context(), opt);
|
||||
}catch(const std::runtime_error&){
|
||||
if(!cache_path_.empty())
|
||||
std::ofstream ofs(cache_path);
|
||||
return nullptr;
|
||||
}
|
||||
// create callable
|
||||
ir::function *tmp = ir->get_function_list()[0];
|
||||
caller* ret = new caller(tmp, std::move(bin), opt);
|
||||
// serialize callable
|
||||
if(!cache_path_.empty()){
|
||||
std::ofstream ofs(cache_path);
|
||||
ret->write(ofs);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
// precompile all kernels spanned by given options space
|
||||
void function::precompile(driver::stream* stream,
|
||||
const options_space_t& space) {
|
||||
// all ranges
|
||||
std::vector<size_t> ranges;
|
||||
ranges.push_back(space.num_warps.size());
|
||||
for(const auto& x: space.defines)
|
||||
ranges.push_back(x.second.size());
|
||||
// functor for source with given option
|
||||
auto do_make = [&](std::vector<size_t> params) {
|
||||
// compilation options
|
||||
unsigned i = 0;
|
||||
options_t opt;
|
||||
opt.num_warps = space.num_warps[params[i++]];
|
||||
for(auto D: space.defines)
|
||||
opt.defines[D.first] = D.second[params[i++]];
|
||||
// compile
|
||||
caller* call = make(stream, opt);
|
||||
if(!call)
|
||||
return;
|
||||
// copy constants
|
||||
std::unique_ptr<driver::buffer> buffer;
|
||||
for(const auto& cst: cst_){
|
||||
buffer = call->parent()->symbol(cst.first.c_str());
|
||||
stream->write(&*buffer, true, 0, cst.second);
|
||||
}
|
||||
callers_[opt].reset(call);
|
||||
};
|
||||
// multi-threaded compilation
|
||||
_loop_nest(ranges, do_make);
|
||||
if(callers_.empty())
|
||||
throw std::runtime_error("could not find valid option in provided space");
|
||||
}
|
||||
|
||||
// return auto-tuning key for given function arguments
|
||||
function::cache_key_t function::get_key(driver::stream *stream, const std::vector<arg>& args) {
|
||||
cache_key_t ret;
|
||||
ret.first = stream->context()->device();
|
||||
for(size_t i = 0; i < args.size(); i++){
|
||||
arg_type ty = args.at(i).type();
|
||||
if(!is_int_type(ty))
|
||||
continue;
|
||||
long val = 0;
|
||||
std::memcpy((void*)&val, args.at(i).data(), size_of(ty));
|
||||
ret.second.push_back(val);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
// returns program with best compilation options for given parameter
|
||||
function::caller* function::autotune(driver::stream* stream, const grid_fn_ty& grid_fn,
|
||||
const std::vector<arg>& args) {
|
||||
// fast path -- no autotuning necessary
|
||||
if(callers_.size() == 1)
|
||||
return &*callers_.begin()->second;
|
||||
// slow path -- autotuning necessary
|
||||
double best_ts = INFINITY;
|
||||
caller* ret = nullptr;
|
||||
for(auto &x : callers_){
|
||||
if(x.second == nullptr)
|
||||
throw std::runtime_error("configuration not compiled");
|
||||
caller* current = &*x.second;
|
||||
double ts = tools::bench([&]() { (*current)(stream, grid_fn(x.first), args); },
|
||||
stream, true);
|
||||
ret = (ts < best_ts) ? current : ret;
|
||||
best_ts = std::min(ts, best_ts);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
// set copy host buffer "data" into constant memory buffer "name"
|
||||
void function::set_cst(const std::string& name, void* data, size_t n_bytes) {
|
||||
cst_[name] = std::vector<char>((char*)data, (char*)data + n_bytes);
|
||||
}
|
||||
|
||||
|
||||
std::string function::preheader() {
|
||||
return
|
||||
R"(
|
||||
return R"(
|
||||
#define bool _Bool
|
||||
#define true 1
|
||||
#define false 0
|
||||
@@ -297,47 +398,65 @@ typedef long int64;
|
||||
)";
|
||||
}
|
||||
|
||||
function::function(const std::string &src, const options_space_t& opt): src_(src), opt_space_(opt) {
|
||||
std::string function::get_cache_prefix() {
|
||||
//user-specified cache path
|
||||
std::string result = tools::getenv("TRITON_CACHE_PATH");
|
||||
if(!result.empty()){
|
||||
if(tools::mkpath(result)==0)
|
||||
return result;
|
||||
}
|
||||
//create in home
|
||||
result = tools::getenv("HOME");
|
||||
if(!result.empty())
|
||||
{
|
||||
result = result + "/.triton/cache/";
|
||||
if(tools::mkpath(result)==0)
|
||||
return result;
|
||||
}
|
||||
return "";
|
||||
}
|
||||
|
||||
function::function(const std::string &src,
|
||||
const options_space_t& opt,
|
||||
const std::string &cache_ref):
|
||||
src_(src), opt_(opt), cache_ref_(cache_ref) {
|
||||
// hash source code
|
||||
unsigned char hash[20];
|
||||
sha1::calc((void*)src_.data(), src_.size(), hash);
|
||||
// create cache path
|
||||
char _hex[40];
|
||||
sha1::toHexString(hash, _hex);
|
||||
std::string hex(_hex, _hex + 40);
|
||||
cache_path_ = get_cache_prefix() + hex + "/";
|
||||
tools::mkpath(cache_path_);
|
||||
// append pre-header to source
|
||||
src_ = preheader() + src_;
|
||||
}
|
||||
|
||||
void function::operator()(const std::vector<arg>& args, const grid_fn_ty& grid_fn, driver::stream *stream) {
|
||||
cache_key_t key;
|
||||
|
||||
/* figure out if the kernel should be re-tuned */
|
||||
// re-tune if device is different
|
||||
key.first = stream->context()->device();
|
||||
// re-tune if any int argument is different
|
||||
for(size_t i = 0; i < args.size(); i++){
|
||||
arg_type ty = args.at(i).type();
|
||||
if(is_int_type(ty)){
|
||||
long val = 0;
|
||||
std::memcpy((void*)&val, args.at(i).data(), size_of(ty));
|
||||
key.second.push_back(val);
|
||||
}
|
||||
}
|
||||
|
||||
/* find existing configuration */
|
||||
void function::operator()(const std::vector<arg>& args,
|
||||
const grid_fn_ty& grid_fn,
|
||||
driver::stream *stream) {
|
||||
// pre-compile kernels
|
||||
if(callers_.empty())
|
||||
precompile(stream, opt_);
|
||||
// auto-tune if necessary
|
||||
auto key = get_key(stream, args);
|
||||
auto it = cache_.find(key);
|
||||
if(it != cache_.end()){
|
||||
it->second(stream, grid_fn(it->second.opt()), args);
|
||||
return;
|
||||
}
|
||||
|
||||
/* re-tune and re-compile */
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(mut);
|
||||
cache_.insert({key, autotune(stream, grid_fn, args)});
|
||||
if(it == cache_.end()){
|
||||
auto best = autotune(stream, grid_fn, args);
|
||||
it = cache_.insert({key, best}).first;
|
||||
}
|
||||
// run
|
||||
(*it->second)(stream, grid_fn(it->second->opt()), args);
|
||||
}
|
||||
|
||||
void function::operator()(const std::vector<arg>& args, const grid_t& grid, driver::stream *stream) {
|
||||
void function::operator()(const std::vector<arg>& args,
|
||||
const grid_t& grid,
|
||||
driver::stream *stream) {
|
||||
return this->operator()(args, [&grid](const options_t&){ return grid; }, stream);
|
||||
}
|
||||
|
||||
void function::set_cst(const std::string& name, void* data, size_t n_bytes) {
|
||||
cst_[name] = std::vector<char>((char*)data, (char*)data + n_bytes);
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
}
|
||||
|
@@ -17,14 +17,14 @@ MNK = [
|
||||
(2048, 2048, 2048),
|
||||
#(8192, 8192, 8192),
|
||||
|
||||
# (64, 64, 64000),
|
||||
# (64, 64, 128000),
|
||||
# (256, 256, 64000),
|
||||
# (256, 256, 128000),
|
||||
(64, 64, 64000),
|
||||
(64, 64, 128000),
|
||||
(256, 256, 64000),
|
||||
(256, 256, 128000),
|
||||
|
||||
# (1536, 16, 1536),
|
||||
# (1536, 32, 1536),
|
||||
# (1536, 64, 1536),
|
||||
(1536, 16, 1536),
|
||||
(1536, 32, 1536),
|
||||
(1536, 64, 1536),
|
||||
# (1536, 128, 1536),
|
||||
# (4096, 16, 4096),
|
||||
# (4096, 32, 4096),
|
||||
@@ -33,9 +33,9 @@ MNK = [
|
||||
|
||||
# (127008, 768, 576)
|
||||
]
|
||||
#for M, N, K in MNK:
|
||||
# matmul = lambda a, b: torch.matmul(a, b)
|
||||
# configs += [([M, K], [K, N], [M, N], matmul, 'mk,kn->mn', dict())]
|
||||
for M, N, K in MNK:
|
||||
matmul = lambda a, b: torch.matmul(a, b)
|
||||
configs += [([M, K], [K, N], [M, N], matmul, 'mk,kn->mn', dict())]
|
||||
#for M, N, K in MNK:
|
||||
# matmul = lambda a, b: torch.matmul(a.t(), b)
|
||||
# configs += [([M, K], [M, N], [K, N], None, 'mk,mn->kn', dict())]
|
||||
@@ -175,15 +175,15 @@ for a_shape, b_shape, c_shape, torch_fn, expr, arrays in configs:
|
||||
a = torch.rand(*a_shape).type(dtype).cuda()
|
||||
b = torch.rand(*b_shape).type(dtype).cuda()
|
||||
# triton output
|
||||
print(a.size(), b.size())
|
||||
tc = triton.ops.einsum(expr, a, b, c_shape, arrays = arrays, bench = True)
|
||||
tc = torch.empty(c_shape, device=a.device)
|
||||
triton.ops.einsum(expr, a, b, tc, arrays = arrays, bench = True)
|
||||
# reference output
|
||||
if torch_fn:
|
||||
rc = torch_fn(a, b, **arrays)
|
||||
else:
|
||||
rc = torch.einsum(expr, a, b)
|
||||
# performance relative to equivalent matrix multiplication
|
||||
ctx = triton.ctx_registry[tc]
|
||||
ctx = triton.ops._einsum.registry[tc]
|
||||
B, M, N, K = ctx.matmul_B, ctx.matmul_M, ctx.matmul_N, ctx.matmul_K
|
||||
cmp_eqbmm = False
|
||||
if cmp_eqbmm:
|
||||
|
@@ -6,6 +6,7 @@
|
||||
#include <regex>
|
||||
#include <algorithm>
|
||||
#include "triton/runtime/function.h"
|
||||
#include "triton/runtime/arg.h"
|
||||
#include "triton/lang/code_gen.h"
|
||||
#include "triton/lang/parser.h"
|
||||
#include "triton/lang/cpp.h"
|
||||
@@ -40,9 +41,10 @@ void delete_grid(size_t id) {
|
||||
/* Function map */
|
||||
|
||||
void register_fn(size_t id,
|
||||
const std::string& src,
|
||||
const rt::function::options_space_t& opt) {
|
||||
id_fn_map[id].reset(new rt::function(src, opt));
|
||||
const std::string& src,
|
||||
const rt::function::options_space_t& opt,
|
||||
const std::string &cache_ref) {
|
||||
id_fn_map[id].reset(new rt::function(src, opt, cache_ref));
|
||||
}
|
||||
|
||||
void delete_fn(size_t id) {
|
||||
@@ -64,6 +66,7 @@ size_t make_op_id() {
|
||||
return id_fn_map.size();
|
||||
}
|
||||
|
||||
|
||||
/* TF scalar wrapper */
|
||||
size_t make_scalar_id() {
|
||||
size_t ret = i64scalar_map.size();
|
||||
@@ -423,6 +426,37 @@ inline std::string to_torch_ty(ir::type *ty) {
|
||||
throw std::runtime_error("unknown type");
|
||||
}
|
||||
|
||||
inline std::string to_torch_ty(rt::arg_type ty){
|
||||
switch(ty){
|
||||
case rt::INT1_T: return "int64_t";
|
||||
case rt::INT8_T: return "int64_t";
|
||||
case rt::INT16_T: return "int64_t";
|
||||
case rt::INT32_T: return "int64_t";
|
||||
case rt::INT64_T: return "int64_t";
|
||||
case rt::HALF_T: return "double";
|
||||
case rt::FLOAT_T: return "double";
|
||||
case rt::DOUBLE_T: return "double";
|
||||
case rt::BUFFER_T: return "torch::Tensor";
|
||||
default: return "UNKNOWN";
|
||||
}
|
||||
}
|
||||
|
||||
inline std::string to_c_ty(rt::arg_type ty){
|
||||
switch(ty){
|
||||
case rt::INT1_T: return "bool";
|
||||
case rt::INT8_T: return "int8_t";
|
||||
case rt::INT16_T: return "int16_t";
|
||||
case rt::INT32_T: return "int32_t";
|
||||
case rt::INT64_T: return "int64_t";
|
||||
case rt::HALF_T: return "half";
|
||||
case rt::FLOAT_T: return "float";
|
||||
case rt::DOUBLE_T: return "double";
|
||||
case rt::BUFFER_T: return "drv::cu_buffer";
|
||||
default: return "UNKNOWN";
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
inline std::string to_c_ty(ir::type *ty) {
|
||||
if(ty->is_integer_ty(1))
|
||||
return "bool";
|
||||
@@ -448,33 +482,30 @@ inline std::string to_c_ty(ir::type *ty) {
|
||||
|
||||
|
||||
void gen_torch_signature(std::ostringstream& oss,
|
||||
ir::function* fn,
|
||||
const std::string& name) {
|
||||
const auto& args = fn->args();
|
||||
const std::string& name,
|
||||
const std::vector<rt::arg_type>& args) {
|
||||
std::string ret_ty = "void";
|
||||
oss << ret_ty << " " << name << "(";
|
||||
oss << "int64_t id, ";
|
||||
oss << "int64_t bench, ";
|
||||
oss << "int64_t bench_id, ";
|
||||
for(size_t i = 0; i < args.size(); i++) {
|
||||
ir::argument* arg = args[i];
|
||||
if(i > 0)
|
||||
oss << ", ";
|
||||
oss << to_torch_ty(arg->get_type()) << " " << arg->get_name();
|
||||
oss << to_torch_ty(args[i]) << " " << "th_arg_" << i;
|
||||
}
|
||||
oss << ")";
|
||||
}
|
||||
|
||||
void gen_torch_init_driver(std::ostringstream &oss,
|
||||
const std::vector<ir::argument*>&args) {
|
||||
ir::argument* tensor = nullptr;
|
||||
for(ir::argument* arg: args)
|
||||
if(arg->get_type()->is_pointer_ty()){
|
||||
tensor = arg;
|
||||
const std::vector<rt::arg_type>&args) {
|
||||
// Find index of first buffer
|
||||
size_t i;
|
||||
for(i = 0; i < args.size(); i++)
|
||||
if(args[i] == rt::BUFFER_T)
|
||||
break;
|
||||
}
|
||||
oss << " // Wrap CUDA handles" << std::endl;
|
||||
oss << " c10::DeviceIndex device = " << tensor->get_name() << ".storage().device().index();" << std::endl;
|
||||
oss << " c10::DeviceIndex device = th_arg_" << i << ".storage().device().index();" << std::endl;
|
||||
oss << " // Get stream" << std::endl;
|
||||
oss << " CUstream custream = (CUstream)at::cuda::getCurrentCUDAStream(device).stream();" << std::endl;
|
||||
oss << " triton::driver::cu_stream stream(custream, false);" << std::endl;
|
||||
@@ -482,28 +513,28 @@ void gen_torch_init_driver(std::ostringstream &oss,
|
||||
}
|
||||
|
||||
void gen_torch_make_handles(std::ostream &os,
|
||||
const std::vector<ir::argument*>& args) {
|
||||
const std::vector<rt::arg_type>& args) {
|
||||
for(unsigned i = 0; i < args.size(); i++){
|
||||
ir::argument *arg = args[i];
|
||||
const std::string& name = arg->get_name();
|
||||
ir::type* ty = arg->get_type();
|
||||
if(!ty->is_pointer_ty())
|
||||
os << " " << to_c_ty(ty) << " arg_" << name << " = " << name << ";" << std::endl;
|
||||
rt::arg_type arg = args[i];
|
||||
const std::string th_name = "th_arg_" + std::to_string(i);
|
||||
const std::string name = "arg_" + std::to_string(i);
|
||||
if(arg != rt::BUFFER_T)
|
||||
os << " " << to_c_ty(arg) << " " << name << " = " << th_name << ";" << std::endl;
|
||||
else{
|
||||
os << " CHECK_INPUT(" << name << ");" << std::endl;
|
||||
os << " drv::cu_buffer arg_" + name + "(ctx, " + name + ".storage().size(), "
|
||||
" (CUdeviceptr)((char*)" + name + ".storage().data() + " + name + ".storage_offset() * " + name + ".itemsize()), false);" << std::endl;
|
||||
os << " CHECK_INPUT(" << th_name << ");" << std::endl;
|
||||
os << " drv::cu_buffer " + name + "(ctx, " + th_name + ".storage().size(), "
|
||||
" (CUdeviceptr)((char*)" + th_name + ".storage().data() + " + th_name + ".storage_offset() * " + th_name + ".itemsize()), false);" << std::endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void gen_torch_make_launch_function(std::ostream &os, const std::vector<ir::argument*>& args) {
|
||||
void gen_torch_make_launch_function(std::ostream &os,
|
||||
const std::vector<rt::arg_type>& args) {
|
||||
os << " std::function<void()> run = [&](){\n ";
|
||||
os << " (*id_fn_map.at(id))({";
|
||||
for(unsigned i = 0; i < args.size() ; i++){
|
||||
ir::argument *arg = args[i];
|
||||
std::string name = "arg_" + arg->get_name();
|
||||
if(arg->get_type()->is_pointer_ty())
|
||||
std::string name = "arg_" + std::to_string(i);
|
||||
if(args[i] == rt::BUFFER_T)
|
||||
name = "&" + name;
|
||||
if(i > 0)
|
||||
os << ", ";
|
||||
@@ -531,15 +562,7 @@ void gen_torch_ret(std::ostream &os, const std::vector<std::string>& outputs) {
|
||||
}
|
||||
|
||||
std::tuple<std::string,
|
||||
std::string> make_torch_src(const std::string& src,
|
||||
const runtime::function::options_space_t& opt) {
|
||||
// triton-ir code-gen
|
||||
ir::context ctx;
|
||||
auto ir = std::shared_ptr<ir::module>(new ir::module("", ctx));
|
||||
make_module(src, &*ir, opt);
|
||||
// function
|
||||
ir::function* fn = ir->get_function_list().front();
|
||||
std::string name = fn->get_name();
|
||||
std::string> make_torch_src(const std::string& name, std::vector<rt::arg_type> args) {
|
||||
// generate framework code
|
||||
std::ostringstream oss;
|
||||
oss << R"(
|
||||
@@ -563,11 +586,11 @@ extern std::map<size_t, int64_t> i64scalar_map;
|
||||
|
||||
)";
|
||||
|
||||
gen_torch_signature(oss, fn, name);
|
||||
gen_torch_signature(oss, name, args);
|
||||
oss << " {" << std::endl;
|
||||
gen_torch_init_driver(oss, fn->args());
|
||||
gen_torch_make_handles(oss, fn->args());
|
||||
gen_torch_make_launch_function(oss, fn->args());
|
||||
gen_torch_init_driver(oss, args);
|
||||
gen_torch_make_handles(oss, args);
|
||||
gen_torch_make_launch_function(oss, args);
|
||||
//gen_torch_ret(oss);
|
||||
oss << "}" << std::endl;
|
||||
|
||||
@@ -578,6 +601,22 @@ extern std::map<size_t, int64_t> i64scalar_map;
|
||||
return {oss.str(), name};
|
||||
}
|
||||
|
||||
/* Function signature */
|
||||
std::vector<rt::arg_type> get_fn_signature(const std::string& src,
|
||||
const runtime::function::options_space_t& opt) {
|
||||
// triton-ir code-gen
|
||||
ir::context ctx;
|
||||
auto ir = std::shared_ptr<ir::module>(new ir::module("", ctx));
|
||||
make_module(src, &*ir, opt);
|
||||
// function
|
||||
ir::function* fn = ir->get_function_list().front();
|
||||
// extract signature
|
||||
std::vector<rt::arg_type> ret;
|
||||
ir::function_type* ty = fn->get_fn_type();
|
||||
for(size_t i = 0; i < ty->get_num_params(); i++)
|
||||
ret.push_back(rt::convert(ty->get_param_ty(i)));
|
||||
return ret;
|
||||
}
|
||||
|
||||
typedef triton::runtime::function::options_t options_t;
|
||||
typedef triton::runtime::function::options_space_t options_space_t;
|
||||
@@ -593,6 +632,17 @@ PYBIND11_MODULE(libtriton, m) {
|
||||
"Creates C++ source code for a custom PyTorch op ");
|
||||
|
||||
// bindings for triton classes
|
||||
pybind11::enum_<rt::arg_type>(m, "arg_type")
|
||||
.value("int1", rt::INT1_T)
|
||||
.value("int8", rt::INT8_T)
|
||||
.value("int16", rt::INT16_T)
|
||||
.value("int32", rt::INT32_T)
|
||||
.value("int64", rt::INT64_T)
|
||||
.value("half", rt::HALF_T)
|
||||
.value("float", rt::FLOAT_T)
|
||||
.value("double", rt::DOUBLE_T)
|
||||
.value("buffer", rt::BUFFER_T);
|
||||
|
||||
pybind11::class_<options_t>(m, "options")
|
||||
.def(pybind11::init<>())
|
||||
.def("d", &options_t::D<int>)
|
||||
@@ -604,6 +654,7 @@ PYBIND11_MODULE(libtriton, m) {
|
||||
.def_readwrite("num_warps", &options_space_t::num_warps);
|
||||
|
||||
// hooks into triton constructs since frameworks may not use pybind11
|
||||
m.def("get_fn_signature", &get_fn_signature);
|
||||
m.def("register_grid", ®ister_grid);
|
||||
m.def("delete_grid", &delete_grid);
|
||||
m.def("register_fn", ®ister_fn);
|
||||
|
@@ -1,5 +1,4 @@
|
||||
from .kernel import *
|
||||
from .function import *
|
||||
from .utils import *
|
||||
import triton.ops
|
||||
|
||||
|
@@ -1,127 +0,0 @@
|
||||
import triton.frameworks as fw
|
||||
import triton.utils as utils
|
||||
|
||||
class OpContext(object):
|
||||
|
||||
def __init__(self):
|
||||
self.to_save = []
|
||||
|
||||
def save_for_backward(self, *tensors):
|
||||
self.to_save = [x.to_tensor() if isinstance(x, utils.tf_empty_proxy) else x
|
||||
for x in tensors]
|
||||
|
||||
@property
|
||||
def saved_tensors(self):
|
||||
return self.to_save
|
||||
|
||||
class function_meta(type):
|
||||
|
||||
def __init__(cls, name, bases, attrs):
|
||||
cls.registered = False
|
||||
return super(function_meta, cls).__init__(name, bases, attrs)
|
||||
|
||||
ctx_registry = utils.id_dict()
|
||||
|
||||
class function(metaclass = function_meta):
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, *args, **kwargs):
|
||||
raise NotImplementedError
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, grad_output):
|
||||
raise NotImplementedError
|
||||
|
||||
@classmethod
|
||||
def apply_torch(cls, *args, **kwargs):
|
||||
class TorchFunction(fw.torch.autograd.Function):
|
||||
@staticmethod
|
||||
def forward(ctx, *targs):
|
||||
y = cls.forward(ctx, *targs, **cls.torch_kwargs)
|
||||
ctx_registry[y] = ctx
|
||||
return y
|
||||
@staticmethod
|
||||
def backward(ctx, grad_output):
|
||||
return cls.backward(ctx, grad_output)
|
||||
cls.torch_kwargs = kwargs
|
||||
return TorchFunction.apply(*args)
|
||||
torch_kwargs = 0
|
||||
|
||||
@classmethod
|
||||
def extract_tf_tensors(cls, lst, err):
|
||||
ret = []
|
||||
for x in lst:
|
||||
if x is None:
|
||||
ret += [None]
|
||||
elif isinstance(x, fw.tensorflow.Tensor):
|
||||
ret += [x]
|
||||
elif isinstance(x, utils.tf_empty_proxy):
|
||||
if x.tensor is None:
|
||||
raise ValueError('Empty tensor never filled during ' + err)
|
||||
else:
|
||||
ret += [x.tensor]
|
||||
else:
|
||||
raise ValueError('Unsupported return type', type(x))
|
||||
return ret
|
||||
|
||||
@classmethod
|
||||
def map_in_to_args(cls, op, args):
|
||||
ret = dict()
|
||||
for i, ix in enumerate(op.inputs):
|
||||
for j, jx in enumerate(args):
|
||||
if ix is jx:
|
||||
ret[j] = i
|
||||
return ret
|
||||
|
||||
@classmethod
|
||||
def map_res_to_out(cls, op, result):
|
||||
ret = []
|
||||
for i, ix in enumerate(result):
|
||||
for j, jx in enumerate(op.outputs):
|
||||
if ix is jx:
|
||||
ret.append(j)
|
||||
return ret
|
||||
|
||||
@classmethod
|
||||
def apply_tensorflow(cls, *args, **kwargs):
|
||||
ctx = OpContext()
|
||||
|
||||
# run forward pass
|
||||
result = cls.forward(ctx, *args, **kwargs)
|
||||
result = result if isinstance(result, tuple) else (result, )
|
||||
result = function.extract_tf_tensors(result, 'forward')
|
||||
|
||||
# Register backward pass
|
||||
op = result[0].op
|
||||
ctx_registry[op] = ctx
|
||||
if not cls.registered:
|
||||
remap_in = cls.map_in_to_args(op, args)
|
||||
remap_out = cls.map_res_to_out(op, result)
|
||||
@fw.tensorflow.RegisterGradient(op.op_def.name)
|
||||
def gradient(op, *dy):
|
||||
# Remap gradient inputs in the right order
|
||||
dy = [dy[i] for i in remap_out]
|
||||
dy = dy if len(dy) > 1 else dy[0]
|
||||
# Execute gradient function
|
||||
grad = cls.backward(ctx_registry[op], dy)
|
||||
grad = function.extract_tf_tensors(grad, 'backward')
|
||||
# Remap gradient in the right order
|
||||
ret = [None] * len(op.inputs)
|
||||
for i in range(len(grad)):
|
||||
if i in remap_in:
|
||||
ret[remap_in[i]] = grad[i]
|
||||
# Return
|
||||
return ret
|
||||
cls.registered = True
|
||||
|
||||
# Return tensor
|
||||
return result[0] if len(result)==1 else result
|
||||
|
||||
@classmethod
|
||||
def apply(cls, *args, **kwargs):
|
||||
if fw.has_tensorflow():
|
||||
return cls.apply_tensorflow(*args, **kwargs)
|
||||
elif fw.has_torch():
|
||||
return cls.apply_torch(*args, **kwargs)
|
||||
else:
|
||||
assert False
|
@@ -17,43 +17,6 @@ import triton.frameworks as fw
|
||||
import triton.utils
|
||||
import triton._C.libtriton as libtriton
|
||||
|
||||
def _make_framework_src(src, grid):
|
||||
if fw.has_torch:
|
||||
return libtriton.make_torch_src(src, grid)
|
||||
else:
|
||||
assert False
|
||||
|
||||
def _make_cache_path(src):
|
||||
md5 = hashlib.sha1(src.encode())
|
||||
hexhash = md5.hexdigest()
|
||||
home = os.path.expanduser('~')
|
||||
cacheroot = os.path.join(home, '.triton', 'cache')
|
||||
cachepath = os.path.join(cacheroot, str(hexhash))
|
||||
if not os.path.exists(cachepath):
|
||||
os.makedirs(cachepath)
|
||||
return cachepath
|
||||
|
||||
def _write_bindings(src, root):
|
||||
if fw.has_torch():
|
||||
name = 'torch'
|
||||
else:
|
||||
assert False
|
||||
cpp = os.path.join(root, '{name}.cpp'.format(name=name))
|
||||
suffix = sysconfig.get_config_var('EXT_SUFFIX')
|
||||
so = os.path.join(root, '{name}{suffix}'.format(name=name, suffix=suffix))
|
||||
recompile = False
|
||||
# recompile if .so does not exist
|
||||
if not os.path.exists(cpp) or not os.path.exists(so):
|
||||
recompile = True
|
||||
# recompile if cpp was modified after .so
|
||||
elif max(cpp, so, key=os.path.getctime) == cpp:
|
||||
recompile = True
|
||||
# write cpp file
|
||||
if recompile:
|
||||
with open(cpp, 'w+') as handle:
|
||||
handle.writelines(src)
|
||||
# return path of cpp file
|
||||
return (cpp, so)
|
||||
|
||||
@contextlib.contextmanager
|
||||
def quiet():
|
||||
@@ -64,7 +27,7 @@ def quiet():
|
||||
finally:
|
||||
sys.stdout, sys.stderr = old_stdout, old_stderr
|
||||
|
||||
def _build(src, path):
|
||||
def _build(src, path, name):
|
||||
ccdir = os.path.join(libtriton.__file__, os.path.pardir)
|
||||
ccdir = os.path.realpath(ccdir)
|
||||
# include directories
|
||||
@@ -88,7 +51,6 @@ def _build(src, path):
|
||||
libraries += ['torch']
|
||||
abi = fw.torch._C._GLIBCXX_USE_CXX11_ABI
|
||||
extra_compile_args += ['-D_GLIBCXX_USE_CXX11_ABI={abi}'.format(abi=abi)]
|
||||
name = 'torch'
|
||||
else:
|
||||
assert False
|
||||
# extra arguments
|
||||
@@ -142,30 +104,47 @@ def _cvt_to_def_str(obj):
|
||||
return str(obj)
|
||||
|
||||
|
||||
def _make_framework_op(src, options):
|
||||
src, name = _make_framework_src(src, options)
|
||||
cache_path = _make_cache_path(src)
|
||||
cpp, so = _write_bindings(src, cache_path)
|
||||
_build(cpp, cache_path)
|
||||
if fw.has_torch():
|
||||
fw.torch.ops.load_library(so)
|
||||
return getattr(fw.torch.ops.triton, name)
|
||||
else:
|
||||
assert False
|
||||
def _encode(arg_types):
|
||||
codes = {
|
||||
libtriton.arg_type.int1: 'i1',
|
||||
libtriton.arg_type.int8: 'i8',
|
||||
libtriton.arg_type.int32: 'i32',
|
||||
libtriton.arg_type.int64: 'i64',
|
||||
libtriton.arg_type.half: 'f16',
|
||||
libtriton.arg_type.float: 'f32',
|
||||
libtriton.arg_type.double: 'f64',
|
||||
libtriton.arg_type.buffer: 'buf'
|
||||
}
|
||||
ret = '_'.join(map(codes.get, arg_types))
|
||||
return ret
|
||||
|
||||
def _make_grid(grid, args) :
|
||||
scalars = [x for x in args if isinstance(x, triton.utils.scalar)]
|
||||
def grid(opt):
|
||||
for x in scalars:
|
||||
x.set_assume_initialized()
|
||||
result = grid(opt)
|
||||
for x in scalars:
|
||||
x.unset_assume_initialized()
|
||||
return result
|
||||
return grid
|
||||
|
||||
|
||||
bench_registry = triton.utils.id_dict()
|
||||
def _make_framework_op(arg_types):
|
||||
name = _encode(arg_types)
|
||||
# path of .cpp and .so file
|
||||
home = os.path.expanduser('~')
|
||||
root = os.path.join(home, '.triton', 'torch', name)
|
||||
if not os.path.exists(root):
|
||||
os.makedirs(root)
|
||||
suffix = sysconfig.get_config_var('EXT_SUFFIX')
|
||||
so = os.path.join(root, f'op{suffix}')
|
||||
cpp = os.path.join(root, f'op.cpp')
|
||||
# handle cached .so file
|
||||
if os.path.exists(so):
|
||||
tt_mtime = os.stat(os.path.realpath(libtriton.__file__)).st_mtime
|
||||
so_mtime = os.stat(so).st_mtime
|
||||
# can use cached if libtriton is older than the .so
|
||||
if tt_mtime < so_mtime:
|
||||
fw.torch.ops.load_library(so)
|
||||
return getattr(fw.torch.ops.triton, name)
|
||||
# create torch source code
|
||||
src, _ = libtriton.make_torch_src(name, arg_types)
|
||||
with open(cpp, 'w+') as handle:
|
||||
handle.writelines(src)
|
||||
# compile torch source code
|
||||
_build(cpp, root, 'op')
|
||||
fw.torch.ops.load_library(so)
|
||||
return getattr(fw.torch.ops.triton, name)
|
||||
|
||||
|
||||
class kernel:
|
||||
|
||||
@@ -180,9 +159,8 @@ class kernel:
|
||||
self.cst[name] = value
|
||||
|
||||
def __call__(self, *args, **kwargs):
|
||||
|
||||
########################
|
||||
# keyword arguments
|
||||
# JIT Options
|
||||
########################
|
||||
num_warps = kwargs['num_warps'] if 'num_warps' in kwargs else [2, 4, 8]
|
||||
defines = kwargs['defines'] if 'defines' in kwargs else dict()
|
||||
@@ -195,7 +173,6 @@ class kernel:
|
||||
#########################
|
||||
# cache
|
||||
########################
|
||||
|
||||
# create a new framework op when defines are different
|
||||
key = '-'.join(['{key}-{val}'.format(key=key, val=val) for key, val in defines.items()])
|
||||
if key not in self.fw_id.keys():
|
||||
@@ -211,15 +188,16 @@ class kernel:
|
||||
opt = libtriton.options_space()
|
||||
opt.defines = macros
|
||||
opt.num_warps = num_warps
|
||||
# create unique id for this op
|
||||
# create triton function for this op
|
||||
op_id = libtriton.make_op_id()
|
||||
self.fw_id[key] = op_id
|
||||
# register function
|
||||
libtriton.register_fn(op_id, self.src, opt)
|
||||
libtriton.register_fn(op_id, self.src, opt, os.path.realpath(libtriton.__file__))
|
||||
for name, value in self.cst.items():
|
||||
libtriton.register_cst(op_id, name, value)
|
||||
# create pytorch hook for this op
|
||||
arg_types = libtriton.get_fn_signature(self.src, opt)
|
||||
if self.fw_op is None:
|
||||
self.fw_op = _make_framework_op(self.src, opt)
|
||||
self.fw_op = _make_framework_op(arg_types)
|
||||
|
||||
########################
|
||||
# initialize
|
||||
|
@@ -1,7 +1,8 @@
|
||||
import triton
|
||||
import torch
|
||||
import math
|
||||
|
||||
class _batchnorm(triton.function):
|
||||
class _batchnorm(torch.autograd.Function):
|
||||
|
||||
fwd_src = """
|
||||
void fwdbatchnorm(float *Y, float *M, float *V,
|
||||
|
@@ -73,7 +73,7 @@ class _einsum(torch.autograd.Function):
|
||||
stride_a_last, stride_b_last, stride_c_last,
|
||||
lut_mode_a, lut_mode_b,
|
||||
delta_a, delta_b,
|
||||
subscripted):
|
||||
subscripted, varnames):
|
||||
|
||||
use_lut_a = True
|
||||
use_lut_b = True
|
||||
@@ -123,6 +123,8 @@ __global__ void {name}(
|
||||
src += "\n"
|
||||
for ptr in subscripted:
|
||||
src += f", int* {ptr}"
|
||||
for name in varnames:
|
||||
src += f", int {name}"
|
||||
src += """) {
|
||||
|
||||
// re-order outer program ids
|
||||
@@ -274,6 +276,9 @@ __global__ void {name}(
|
||||
TYPE c[TM, TN, TB] = acc;
|
||||
|
||||
// re-materialize ranges
|
||||
pid_mn = get_program_id(0) / div_m;
|
||||
pid_n = pid_mn % grid_n;
|
||||
pid_m = (pid_mn / grid_n)*div_m + (get_program_id(0) % div_m);
|
||||
"""
|
||||
for axes, tile, off in zip([axes_m, axes_n, axes_b],
|
||||
['TM', 'TN', 'TB'],
|
||||
@@ -410,11 +415,8 @@ __global__ void {name}(
|
||||
batch = [d for d in sym_a if d in sym_b and d in sym_c]
|
||||
outer = [d for d in sym_a if d not in sym_b and d in sym_c]
|
||||
inner = [d for d in sym_a if d in sym_b and d not in sym_c]
|
||||
illegal = [d for d in sym_a if d not in sym_b and d not in sym_c]
|
||||
if illegal:
|
||||
raise ValueError(f"einsum labels {illegal} ({expr_a}) "\
|
||||
f"not present in {expr_b} or {expr_c}")
|
||||
return _einsum.uniq(batch), _einsum.uniq(outer), _einsum.uniq(inner)
|
||||
variables = [d for d in sym_a if d not in sym_b and d not in sym_c]
|
||||
return _einsum.uniq(batch), _einsum.uniq(outer), _einsum.uniq(inner), variables
|
||||
|
||||
|
||||
def replace_subscript(expr, arrays):
|
||||
@@ -467,7 +469,33 @@ __global__ void {name}(
|
||||
locks = None
|
||||
kernel_cache = dict()
|
||||
|
||||
def __init__(self, einsum, dtype, stride_a, stride_b, stride_c, shape_a, shape_b, arrays, mask, shape_c):
|
||||
@staticmethod
|
||||
def _tile(M, N, B, TMs, TNs, TBs, TZs, TK):
|
||||
smp = 15
|
||||
# occupancy estimation
|
||||
grid = lambda TM, TN, TB, TZ: \
|
||||
triton.cdiv(M, TM)* \
|
||||
triton.cdiv(N, TN)* \
|
||||
triton.cdiv(B, TB)* \
|
||||
TZ
|
||||
occupancy = lambda TM, TN, TB, TZ: \
|
||||
min(grid(TM, TN, TB, TZ), 4*smp)
|
||||
# arithmetic intensity estimation
|
||||
intensity = lambda TM, TN: \
|
||||
TM * TN * TK / (TM*TK + TK*TN)
|
||||
# occupancy/intensity for all configurations
|
||||
estimates = {(TM, TN, TB, TZ): (occupancy(TM, TN, TB, TZ), intensity(TM, TN)) \
|
||||
for TM in TMs \
|
||||
for TN in TNs \
|
||||
for TB in TBs \
|
||||
for TZ in TZs }
|
||||
# returns configuration that maximizes occupancy subject to maximizing intensity
|
||||
estimates = sorted(estimates.items(),
|
||||
key=lambda item: item[1],
|
||||
reverse=True)
|
||||
return estimates[0][0]
|
||||
|
||||
def __init__(self, einsum, dtype, stride_a, stride_b, stride_c, shape_a, shape_b, arrays, mask, shape_c, varnames):
|
||||
# parse symbols
|
||||
expr_a, expr_bc = einsum.split(",")
|
||||
expr_b, expr_c = expr_bc.split("->")
|
||||
@@ -476,9 +504,13 @@ __global__ void {name}(
|
||||
sym_b = _einsum.parse_expr(expr_b, subscripted)
|
||||
sym_c = _einsum.parse_expr(expr_c, subscripted)
|
||||
# parse axes
|
||||
axes_b, axes_m, axes_k = _einsum.parse_axes(sym_a, sym_b, sym_c, subscripted)
|
||||
_, axes_n, _ = _einsum.parse_axes(sym_b, sym_a, sym_c, subscripted)
|
||||
axes_b, axes_m, axes_k, var = _einsum.parse_axes(sym_a, sym_b, sym_c, subscripted)
|
||||
_, axes_n, _, _ = _einsum.parse_axes(sym_b, sym_a, sym_c, subscripted)
|
||||
axes = axes_b + axes_m + axes_n + axes_k
|
||||
# unresolved symbols
|
||||
unresolved = [x for x in map(str, var) if x not in varnames]
|
||||
if unresolved:
|
||||
raise ValueError(f'unresolved symbols: {unresolved}')
|
||||
# check dimensions
|
||||
dims_a = dict(zip(sym_a, shape_a))
|
||||
dims_b = dict(zip(sym_b, shape_b))
|
||||
@@ -520,7 +552,7 @@ __global__ void {name}(
|
||||
stride_a_last, stride_b_last, stride_c_last,
|
||||
lut_mode_a, lut_mode_b,
|
||||
delta_a, delta_b,
|
||||
subscripted)
|
||||
subscripted, varnames)
|
||||
self.kernel = cache[name]
|
||||
# Initialize locks
|
||||
if _einsum.instance.locks is None:
|
||||
@@ -565,19 +597,21 @@ __global__ void {name}(
|
||||
self.pos_a = 0
|
||||
self.pos_b = 1
|
||||
self.pos_c = 2
|
||||
# pre-processor macros
|
||||
TM = [16] + [x for x in [32, 64, 128] if x <= M]
|
||||
TN = [16] + [x for x in [32, 64, 128] if x <= N]
|
||||
TB = [x for x in [1, 2, 4] if x <= B]
|
||||
MAX_GZ = K // 2048
|
||||
MIN_GM = M // max(TM)
|
||||
MIN_GN = N // max(TN)
|
||||
MIN_GB = B // max(TB)
|
||||
TZ = [x for x in [1, 2, 4, 8, 16, 32] \
|
||||
if x < MAX_GZ and x*MIN_GM*MIN_GN*MIN_GB < 256]
|
||||
TZ = [1] if not TZ else [TZ[-1], TZ[-1]*2]
|
||||
TM, TN, TB, TZ = 64, 64, 1, 1
|
||||
self.macros = { 'TM': TM, 'TN': TN, 'TB': TB, 'TK': TK, 'TZ': TZ, 'TYPE': dtype}
|
||||
# user-provided variables
|
||||
self.pos_vars = len(self.args)
|
||||
self.varnames = varnames
|
||||
self.args += [None] * len(varnames)
|
||||
# tile size ranges
|
||||
MAX_GZ = triton.cdiv(K, 2048)
|
||||
TMs = [16] + [x for x in [32, 64, 128] if x <= M]
|
||||
TNs = [16] + [x for x in [32, 64, 128] if x <= N]
|
||||
TBs = [x for x in [1, 2, 4, 8] if x <= B]
|
||||
TZs = [x for x in [1, 2, 4, 8, 16, 32] if x <= MAX_GZ]
|
||||
# tile sizes
|
||||
TM, TN, TB, TZ = _einsum.instance._tile(M, N, B, TMs, TNs, TBs, TZs, TK)
|
||||
TM, TN, TB, TZ = 64, 128, 1, 1
|
||||
self.macros = {'TM': TM, 'TN': TN, 'TB': TB, 'TK': TK, 'TZ': TZ, 'TYPE': dtype}
|
||||
self.num_warps = [4]
|
||||
if mask:
|
||||
self.macros['MASK'] = '{0:#0{1}x}'.format(mask, 10)
|
||||
# save information on the operation
|
||||
@@ -589,12 +623,15 @@ __global__ void {name}(
|
||||
self.matmul_N = N
|
||||
self.matmul_K = K
|
||||
self.is_extended = any([not x.is_symbol for x in sym_a + sym_b])
|
||||
|
||||
|
||||
def run(self, a, b, c, bench):
|
||||
def run(self, a, b, c, values, bench):
|
||||
self.args[self.pos_a] = a
|
||||
self.args[self.pos_b] = b
|
||||
self.args[self.pos_c] = c
|
||||
return self.kernel(*self.args, grid=self.grid, bench=bench, defines=self.macros)
|
||||
for i, name in enumerate(self.varnames):
|
||||
self.args[self.pos_vars + i] = values[name]
|
||||
return self.kernel(*self.args, grid=self.grid, bench=bench, defines=self.macros, num_warps=self.num_warps)
|
||||
|
||||
|
||||
|
||||
@@ -604,8 +641,9 @@ __global__ void {name}(
|
||||
############################
|
||||
|
||||
instance_cache = dict()
|
||||
registry = triton.utils.id_dict()
|
||||
@staticmethod
|
||||
def forward(ctx, expr, a, b, output, mask=None, arrays=dict(), bench=False):
|
||||
def forward(ctx, expr, a, b, output, mask, arrays, bench, values):
|
||||
# compile einsum instance
|
||||
cache = _einsum.instance_cache
|
||||
key = (expr, a.dtype,
|
||||
@@ -615,10 +653,10 @@ __global__ void {name}(
|
||||
cache[key] = _einsum.instance(expr, a.dtype,
|
||||
a.stride(), b.stride(), output.stride(),
|
||||
a.shape, b.shape, arrays,
|
||||
mask, output.shape)
|
||||
mask, output.shape, values.keys())
|
||||
instance = cache[key]
|
||||
# run and mark as dirty output modified in-place
|
||||
perf = instance.run(a, b, output, bench)
|
||||
perf = instance.run(a, b, output, values, bench)
|
||||
ctx.mark_dirty(output)
|
||||
# save information in context
|
||||
ctx.is_extended = instance.is_extended
|
||||
@@ -629,8 +667,9 @@ __global__ void {name}(
|
||||
ctx.matmul_M = instance.matmul_M
|
||||
ctx.matmul_N = instance.matmul_N
|
||||
ctx.matmul_K = instance.matmul_K
|
||||
ctx.perf = perf
|
||||
ctx.forward_ms = perf
|
||||
ctx.save_for_backward(a, b)
|
||||
_einsum.registry[output] = ctx
|
||||
return output
|
||||
|
||||
|
||||
@@ -662,5 +701,5 @@ __global__ void {name}(
|
||||
|
||||
def einsum(expr, a, b, output,
|
||||
mask=None, arrays=dict(),
|
||||
bench=False):
|
||||
return _einsum.apply(expr, a, b, output, mask, arrays, bench)
|
||||
bench=False, values=dict()):
|
||||
return _einsum.apply(expr, a, b, output, mask, arrays, bench, values)
|
@@ -10,10 +10,10 @@ int main() {
|
||||
typedef std::tuple<std::vector<int>, bool, bool, int, int, int> config_t;
|
||||
std::vector<config_t> configs;
|
||||
for(auto ord: std::vector<std::vector<int>>{{1, 0}})
|
||||
for(auto x: std::vector<std::array<bool, 2>>{{false, false}, {true, false}}){
|
||||
for(auto x: std::vector<std::array<bool, 2>>{{false, false}}){
|
||||
std::vector<config_t> tmp = {
|
||||
// config_t{ord, x[0], x[1], 512, 512, 512},
|
||||
config_t{ord, x[0], x[1], 8192, 8192, 8192},
|
||||
config_t{ord, x[0], x[1], 2048, 2048, 2048},
|
||||
// config_t{ord, x[0], x[1], 127008, 768, 576},
|
||||
// config_t{ord, x[0], x[1], 8192, 8192, 8192}
|
||||
// config_t{ord, x[0], x[1], 16, 2048, 2048},
|
||||
@@ -36,7 +36,7 @@ int main() {
|
||||
for(const auto& c: configs){
|
||||
std::tie(ord, AT, BT, M, N, K) = c;
|
||||
std::cout << "// " << c ;
|
||||
for(auto perf: bench_dot(stream, HALF, AT, BT, M, N, K, ord, ord))
|
||||
for(auto perf: bench_dot(stream, FLOAT, AT, BT, M, N, K, ord, ord))
|
||||
std::cout << ", " << perf << std::flush;
|
||||
std::cout << std::endl;
|
||||
}
|
||||
|
Reference in New Issue
Block a user