[PYTHON] Made codebase pep8 compliant

This commit is contained in:
Philippe Tillet
2021-02-07 15:06:57 -05:00
parent 2a02fabdac
commit dffd66bc83
5 changed files with 207 additions and 177 deletions

View File

@@ -6,34 +6,35 @@ import triton._C.libtriton.triton as _triton
import triton._C.libtriton.torch_utils as _torch_utils
# Make sure internal C resources are cleaned up upon exit
import atexit
@atexit.register
def cleanup():
_triton.cleanup()
_triton.cleanup()
codes = {
_triton.arg_type.int1: 'B',
_triton.arg_type.int8: 'B',
_triton.arg_type.int32: 'I',
_triton.arg_type.int64: 'Q',
_triton.arg_type.half: 'H',
_triton.arg_type.float: 'f',
_triton.arg_type.double: 'd',
_triton.arg_type.buffer: 'P'
_triton.arg_type.int1: 'B',
_triton.arg_type.int8: 'B',
_triton.arg_type.int32: 'I',
_triton.arg_type.int64: 'Q',
_triton.arg_type.half: 'H',
_triton.arg_type.float: 'f',
_triton.arg_type.double: 'd',
_triton.arg_type.buffer: 'P'
}
def th_to_triton(obj):
tys = {
torch.int8: 'char',
torch.int16: 'short',
torch.int32: 'int',
torch.int64: 'long',
torch.float16: 'half',
torch.float32: 'float',
torch.float64: 'double'
}
if isinstance(obj, torch.dtype):
return tys[obj]
return str(obj)
tys = {
torch.int8: 'char',
torch.int16: 'short',
torch.int32: 'int',
torch.int64: 'long',
torch.float16: 'half',
torch.float32: 'float',
torch.float64: 'double'
}
if isinstance(obj, torch.dtype):
return tys[obj]
return str(obj)
def cdiv(a, b):
return (a + b - 1) // b
@@ -44,46 +45,45 @@ def synchronize(device):
_torch_utils.synchronize(dev_id)
def read(path, kernel_names=[]):
with open(path, 'r') as f:
source = f.read()
source = _triton.extract_kernels(source, kernel_names)
return source
with open(path, 'r') as f:
source = f.read()
source = _triton.extract_kernels(source, kernel_names)
return source
class kernel:
def __init__(self, src, device, defines=dict(), num_warps=4, autotune_vals=[], autotune_key=[]):
# check if src is empty
if src == '':
raise ValueError('Kernel source code is empty')
self.src = src
self.opt = _triton.options()
self.opt.defines = {k: th_to_triton(v) for k, v in defines.items()}
self.opt.num_warps = num_warps
# device
assert device.type in ['cuda', 'cpu']
if device.type == 'cuda':
self.device = torch.cuda.current_device() if device.index is None else device.index
if device.type == 'cpu':
self.device = -1
_torch_utils.register_device(self.device)
_torch_utils.register_stream(self.device)
# C++ function wrapper
self.op_id = _triton.make_op_id()
_triton.register_fn(self.op_id, self.device, self.src, self.opt, autotune_vals, autotune_key)
# debug mode
self.is_debug = 'TRITON_DEBUG' in os.environ
# signature
arg_types = _triton.get_fn_signature(self.op_id)
self.tys = ''.join([codes[x] for x in arg_types])
def __init__(self, src, device, defines = dict(), num_warps = 4, autotune_vals = [], autotune_key = []):
# check if src is empty
if src == '':
raise ValueError('Kernel source code is empty')
self.src = src
self.opt = _triton.options()
self.opt.defines = {k: th_to_triton(v) for k, v in defines.items()}
self.opt.num_warps = num_warps
# device
assert device.type in ['cuda', 'cpu']
if device.type == 'cuda':
self.device = torch.cuda.current_device() if device.index is None else device.index
if device.type == 'cpu':
self.device = -1
_torch_utils.register_device(self.device)
_torch_utils.register_stream(self.device)
# C++ function wrapper
self.op_id = _triton.make_op_id()
_triton.register_fn(self.op_id, self.device, self.src, self.opt, autotune_vals, autotune_key)
# debug mode
self.is_debug = 'TRITON_DEBUG' in os.environ
# signature
arg_types = _triton.get_fn_signature(self.op_id)
self.tys = ''.join([codes[x] for x in arg_types])
def __call__(self, *args, grid):
_torch_utils.set_device(self.device)
# pack parameters into a byte buffer
params = struct.pack(self.tys, *args)
opt = _triton.autotune(self.op_id, self.device, params, grid)
# run kernel
grid = grid(opt)
grid_0 = grid[0]
grid_1 = 1 if len(grid) < 2 else grid[1]
grid_2 = 1 if len(grid) < 3 else grid[2]
_triton.launch_kernel(self.op_id, self.device, params, grid_0, grid_1, grid_2)
def __call__(self, *args, grid):
_torch_utils.set_device(self.device)
# pack parameters into a byte buffer
params = struct.pack(self.tys, *args)
opt = _triton.autotune(self.op_id, self.device, params, grid)
# run kernel
grid = grid(opt)
grid_0 = grid[0]
grid_1 = 1 if len(grid) < 2 else grid[1]
grid_2 = 1 if len(grid) < 3 else grid[2]
_triton.launch_kernel(self.op_id, self.device, params, grid_0, grid_1, grid_2)

View File

@@ -2,21 +2,15 @@ import triton
import torch
import os
fwd_src = triton.read(os.path.join(os.path.dirname(__file__), 'softmax.c'),
kernel_names=['forward'])
fwd_src = triton.read(os.path.join(os.path.dirname(__file__), 'softmax.c'), kernel_names=['forward'])
fwd_kernels = dict()
bwd_src = triton.read(os.path.join(os.path.dirname(__file__), 'softmax.c'),
kernel_names=['backward'])
bwd_src = triton.read(os.path.join(os.path.dirname(__file__), 'softmax.c'), kernel_names=['backward'])
bwd_kernels = dict()
class _softmax(torch.autograd.Function):
@staticmethod
def next_power_of_2(n):
def next_power_of_2(n):
n -= 1
n |= n >> 1
n |= n >> 2
@@ -24,7 +18,7 @@ class _softmax(torch.autograd.Function):
n |= n >> 8
n |= n >> 16
n += 1
return n
return n
@staticmethod
def make_lut(layout, block, device):
@@ -32,7 +26,7 @@ class _softmax(torch.autograd.Function):
sizes = _empty.clone()
# sizes along rows
for h in range(layout.shape[0]):
sizes = torch.cat((sizes, layout[h,:,:].sum(-1)))
sizes = torch.cat((sizes, layout[h, :, :].sum(-1)))
# offsets in block format
offsets = torch.zeros_like(sizes)
offsets[1:] = torch.cumsum(sizes[:-1], dim=0)
@@ -41,26 +35,29 @@ class _softmax(torch.autograd.Function):
head = layout.nonzero(as_tuple=False)[:, 0]
rows = layout.nonzero(as_tuple=False)[:, 1]
columns = layout.nonzero(as_tuple=False)[:, 2]
core = torch.stack((idx, columns, rows, head), dim=1).view(-1)
core = torch.stack((idx, columns, rows, head), dim=1).view(-1)
# construct look-up table
offsets = offsets*4 + 2*sizes.numel()
offsets = offsets * 4 + 2 * sizes.numel()
header = torch.stack((sizes, offsets), dim=1).view(-1)
lut = torch.cat((header, core)).type(torch.int32).to(device)
return lut, int(sizes.max())
@staticmethod
def make_kernel(cache, src, max_k, device, dtype, block, apply_scale, apply_rpe, apply_kp_mask, apply_attn_mask, kp_mask_mode, attn_mask_mode):
def make_kernel(cache, src, max_k, device, dtype, block, apply_scale, apply_rpe, apply_kp_mask, apply_attn_mask,
kp_mask_mode, attn_mask_mode):
if max_k >= 32768:
raise NotImplementedError('Reductions larger than 32768 elements '\
'are not yet implemented')
raise NotImplementedError('Reductions larger than 32768 elements '\
'are not yet implemented')
num_warps = 4 if max_k < 512 else (8 if max_k < 2048 else 16)
TN = _softmax.next_power_of_2(max_k)
# just-in-time compile kernel
key = (block, device, dtype, num_warps, TN, apply_scale, apply_rpe, apply_kp_mask, apply_attn_mask, kp_mask_mode, attn_mask_mode)
key = (block, device, dtype, num_warps, TN, apply_scale, apply_rpe, apply_kp_mask, apply_attn_mask,
kp_mask_mode, attn_mask_mode)
if key not in cache:
defines = {'TM': 1, 'TN': TN, 'TYPE': dtype, 'BLOCK': block,
'INFINITY': {torch.float32: 'F32_INFINITY',
torch.float16: 'F16_INFINITY'}[dtype]}
defines = {
'TM': 1, 'TN': TN, 'TYPE': dtype, 'BLOCK': block, 'INFINITY':
{torch.float32: 'F32_INFINITY', torch.float16: 'F16_INFINITY'}[dtype]
}
if apply_scale:
defines['APPLY_SCALE'] = True
if apply_rpe:
@@ -73,13 +70,13 @@ class _softmax(torch.autograd.Function):
defines['APPLY_ATTN_MASK'] = True
if attn_mask_mode == 'mul':
defines['ATTN_MASK_MUL'] = True
kernel = triton.kernel(src, device=device, defines=defines, num_warps=num_warps)
kernel = triton.kernel(src, device=device, defines=defines, num_warps=num_warps)
cache[key] = kernel
return cache[key]
@staticmethod
def forward(ctx, x, scale, rpe, key_padding_mask, attn_mask, kp_mask_mode, attn_mask_mode,
spdims, block, lut, maxlut, bench, time):
def forward(ctx, x, scale, rpe, key_padding_mask, attn_mask, kp_mask_mode, attn_mask_mode, spdims, block, lut,
maxlut, bench, time):
apply_scale = False if scale == 1.0 else True
# handle None rpe
@@ -109,17 +106,26 @@ class _softmax(torch.autograd.Function):
apply_attn_mask = True
stride_zattnm = attn_mask.stride(0)
# run kernel
kernel = _softmax.make_kernel(fwd_kernels, fwd_src, maxlut*block, x.device, x.dtype, block,
apply_scale, apply_rpe, apply_kp_mask, apply_attn_mask,
kp_mask_mode, attn_mask_mode)
kernel = _softmax.make_kernel(fwd_kernels, fwd_src, maxlut * block, x.device, x.dtype, block, apply_scale,
apply_rpe, apply_kp_mask, apply_attn_mask, kp_mask_mode, attn_mask_mode)
M = x.shape[0]
grid = lambda opt: [triton.cdiv(spdims[0] * spdims[1] * block, opt.TM), M]
# run kernel
kernel(x.data_ptr(), scale, lut.data_ptr(), rpe.data_ptr(), key_padding_mask.data_ptr(), attn_mask.data_ptr(),
maxlut, x.stride(0), stride_zrpe, stride_hrpe, stride_srpe, stride_zkpm, stride_zattnm,
kernel(x.data_ptr(),
scale,
lut.data_ptr(),
rpe.data_ptr(),
key_padding_mask.data_ptr(),
attn_mask.data_ptr(),
maxlut,
x.stride(0),
stride_zrpe,
stride_hrpe,
stride_srpe,
stride_zkpm,
stride_zattnm,
grid=grid)
# save to context
ctx.mark_dirty(x)
@@ -135,39 +141,45 @@ class _softmax(torch.autograd.Function):
ctx.kp_mask_mode = kp_mask_mode
ctx.attn_mask_mode = attn_mask_mode
return x
@staticmethod
def backward(ctx, dx):
# retrieve from context
x, lut = ctx.saved_tensors
# run kernel
kernel = _softmax.make_kernel(bwd_kernels, bwd_src, ctx.maxlut*ctx.block, x.device, x.dtype, ctx.block,
ctx.apply_scale, ctx.apply_rpe, ctx.apply_kp_mask, ctx.apply_attn_mask,
ctx.kp_mask_mode, ctx.attn_mask_mode)
kernel = _softmax.make_kernel(bwd_kernels, bwd_src, ctx.maxlut * ctx.block, x.device, x.dtype, ctx.block,
ctx.apply_scale, ctx.apply_rpe, ctx.apply_kp_mask, ctx.apply_attn_mask,
ctx.kp_mask_mode, ctx.attn_mask_mode)
M = x.shape[0]
grid = lambda opt: [triton.cdiv(ctx.spdims[0] * ctx.spdims[1] * ctx.block, opt.TM), M]
kernel(x.data_ptr(), ctx.scale, dx.data_ptr(), lut.data_ptr(), ctx.maxlut, x.stride(0), dx.stride(0), grid=grid)
return dx, None, None, None, None, None, None, None, None, None, None, None, None, None, None
class softmax:
apply_softmax = _softmax.apply
def make_lut(self, device):
key = (device, )
if key not in self.lut_cache:
self.lut_cache[key] = _softmax.make_lut(self.layout, self.block, device)
self.lut_cache[key] = _softmax.make_lut(self.layout, self.block, device)
return self.lut_cache[key]
def __init__(self, layout, block, bench = False):
def __init__(self, layout, block, bench=False):
self.spdims = layout.shape
self.layout = layout
self.block = block
self.bench = bench
self.lut_cache = dict()
def __call__(self, x, scale = 1., rpe = None, key_padding_mask = None, attn_mask = None,
key_padding_mask_mode='add', attn_mask_mode='add'):
def __call__(self,
x,
scale=1.,
rpe=None,
key_padding_mask=None,
attn_mask=None,
key_padding_mask_mode='add',
attn_mask_mode='add'):
time_y = [None]
if rpe is not None and rpe.dtype != x.dtype:
raise ValueError('relative position embedding must be %s' % x.dtype)
@@ -176,9 +188,6 @@ class softmax:
if key_padding_mask is not None and key_padding_mask.dtype != x.dtype:
raise ValueError('Key padding mask must be %s' % x.dtype)
lut, maxlut = self.make_lut(x.device)
x = softmax.apply_softmax(x, scale, rpe, key_padding_mask, attn_mask,
key_padding_mask_mode, attn_mask_mode,
self.spdims, self.block,
lut,
maxlut, self.bench, time_y)
x = softmax.apply_softmax(x, scale, rpe, key_padding_mask, attn_mask, key_padding_mask_mode, attn_mask_mode,
self.spdims, self.block, lut, maxlut, self.bench, time_y)
return x

View File

@@ -8,50 +8,74 @@ class _conv(torch.autograd.Function):
@staticmethod
def unpack(IDX, CI, R, S):
s = IDX % S
cr = IDX // S
r = cr % R
ci = cr // R
return ci, r, s
s = IDX % S
cr = IDX // S
r = cr % R
ci = cr // R
return ci, r, s
@staticmethod
def forward(ctx, a, b, pad, stride):
# create kernel if necessary
dtype = a.dtype
device = a.device
# shapes
Z, CI, H, W = a.shape
_, R, S, CO = b.shape
P = (H + 2*pad[0] - R)//stride[0] + 1
Q = (W + 2*pad[1] - S)//stride[1] + 1
# compile kernel
if (dtype, device) not in _conv.kernel:
TK = 16
defines = {
'TYPE' : dtype,
'TM' : 64,
'TN' : 64,
'TK' : TK,
'TZ' : 1,
'HH': H, 'WW': W, 'PP': P, 'QQ': Q, 'SS': S, 'RR': R,
}
idx = torch.arange(CI*R*S)
ci, r, s = _conv.unpack(idx, CI, R, S)
nci, nr, ns = _conv.unpack(idx + TK, CI, R, S)
delta = (nci - ci)*a.stride(1) + (nr - r)*a.stride(2) + (ns - s)*a.stride(3)
delta = delta.type(torch.int32).cuda()
_conv.kernel[dtype] = (delta, triton.kernel(_conv.src, device=device, defines=defines))
delta, kernel = _conv.kernel[dtype]
# allocate output
c = torch.empty([Z, CO, P, Q], dtype=dtype, device=device)
# enqueue
kernel(a.data_ptr(), b.data_ptr(), c.data_ptr(), 1., Z*P*Q, CO, CI*R*S,
pad[0], pad[1], stride[0], stride[1],
# create kernel if necessary
dtype = a.dtype
device = a.device
# shapes
Z, CI, H, W = a.shape
_, R, S, CO = b.shape
P = (H + 2 * pad[0] - R) // stride[0] + 1
Q = (W + 2 * pad[1] - S) // stride[1] + 1
# compile kernel
if (dtype, device) not in _conv.kernel:
TK = 16
defines = {
'TYPE': dtype,
'TM': 64,
'TN': 64,
'TK': TK,
'TZ': 1,
'HH': H,
'WW': W,
'PP': P,
'QQ': Q,
'SS': S,
'RR': R,
}
idx = torch.arange(CI * R * S)
ci, r, s = _conv.unpack(idx, CI, R, S)
nci, nr, ns = _conv.unpack(idx + TK, CI, R, S)
delta = (nci - ci) * a.stride(1) + (nr - r) * a.stride(2) + (ns - s) * a.stride(3)
delta = delta.type(torch.int32).cuda()
_conv.kernel[dtype] = (delta, triton.kernel(_conv.src, device=device, defines=defines))
delta, kernel = _conv.kernel[dtype]
# allocate output
c = torch.empty([Z, CO, P, Q], dtype=dtype, device=device)
# enqueue
kernel(
a.data_ptr(),
b.data_ptr(),
c.data_ptr(),
1.,
Z * P * Q,
CO,
CI * R * S,
pad[0],
pad[1],
stride[0],
stride[1],
delta.data_ptr(),
a.stride(0), a.stride(1), a.stride(2), a.stride(3),
b.stride(0), b.stride(1), b.stride(2), b.stride(3),
c.stride(0), c.stride(1), c.stride(2), c.stride(3),
grid = lambda opt: [triton.cdiv(Z*P*Q, opt.TM), triton.cdiv(CO, opt.TN)])
return c
a.stride(0),
a.stride(1),
a.stride(2),
a.stride(3),
b.stride(0),
b.stride(1),
b.stride(2),
b.stride(3),
c.stride(0),
c.stride(1),
c.stride(2),
c.stride(3),
grid=lambda opt: [triton.cdiv(Z * P * Q, opt.TM), triton.cdiv(CO, opt.TN)])
return c
conv = _conv.apply

View File

@@ -7,17 +7,17 @@ class _matmul(torch.autograd.Function):
_DEFAULT_CONFIGS = [
({'TM': '128', 'TN': '128', 'TK': '32', 'TZ': '1'}, 4),
({'TM': '64', 'TN': '128', 'TK': '32', 'TZ': '1'}, 4),
({'TM': '128', 'TN': '64' , 'TK': '32', 'TZ': '1'}, 4),
({'TM': '64' , 'TN': '64' , 'TK': '64', 'TZ': '1'}, 4),
({'TM': '32' , 'TN': '128', 'TK': '64', 'TZ': '1'}, 4),
({'TM': '128', 'TN': '32' , 'TK': '64', 'TZ': '1'}, 4),
({'TM': '64' , 'TN': '32' , 'TK': '64', 'TZ': '1'}, 2),
({'TM': '32' , 'TN': '64' , 'TK': '64', 'TZ': '1'}, 2),
({'TM': '32' , 'TN': '128', 'TK': '32', 'TZ': '2'}, 4),
({'TM': '32' , 'TN': '128', 'TK': '32', 'TZ': '2'}, 4),
({'TM': '128' , 'TN': '32', 'TK': '32', 'TZ': '4'}, 4),
({'TM': '128' , 'TN': '32', 'TK': '32', 'TZ': '4'}, 4),
({'TM': '64', 'TN': '128', 'TK': '32', 'TZ': '1'}, 4),
({'TM': '128', 'TN': '64', 'TK': '32', 'TZ': '1'}, 4),
({'TM': '64', 'TN': '64', 'TK': '64', 'TZ': '1'}, 4),
({'TM': '32', 'TN': '128', 'TK': '64', 'TZ': '1'}, 4),
({'TM': '128', 'TN': '32', 'TK': '64', 'TZ': '1'}, 4),
({'TM': '64', 'TN': '32', 'TK': '64', 'TZ': '1'}, 2),
({'TM': '32', 'TN': '64', 'TK': '64', 'TZ': '1'}, 2),
({'TM': '32', 'TN': '128', 'TK': '32', 'TZ': '2'}, 4),
({'TM': '32', 'TN': '128', 'TK': '32', 'TZ': '2'}, 4),
({'TM': '128', 'TN': '32', 'TK': '32', 'TZ': '4'}, 4),
({'TM': '128', 'TN': '32', 'TK': '32', 'TZ': '4'}, 4),
]
_CONFIGS = _DEFAULT_CONFIGS
@@ -28,9 +28,9 @@ class _matmul(torch.autograd.Function):
if N % 2 == 0: return 2
return 1
_locks = dict()
_kernels = dict()
@staticmethod
def _call(a, b):
dtype = a.dtype
@@ -51,26 +51,24 @@ class _matmul(torch.autograd.Function):
lda_pow2_div = _matmul.largest_pow2_divisor(lda)
ldb_pow2_div = _matmul.largest_pow2_divisor(ldb)
ldc_pow2_div = _matmul.largest_pow2_divisor(ldc)
is_tk_div_k = K % 64 == 0
is_tk_div_k = K % 64 == 0
key = (device, dtype, is_a_row, is_b_row, lda_pow2_div, ldb_pow2_div, ldc_pow2_div, is_tk_div_k)
if key not in _matmul._kernels:
defines = {
'TYPE' : dtype,
'STRIDE_AM' : 'lda' if is_a_row else '1',
'STRIDE_AK' : '1' if is_a_row else 'lda',
'STRIDE_BK' : 'ldb' if is_b_row else '1',
'STRIDE_BN' : '1' if is_b_row else 'ldb',
'LDA_POW2_DIV': lda_pow2_div,
'LDB_POW2_DIV': ldb_pow2_div,
'LDC_POW2_DIV': ldc_pow2_div,
'IS_TK_DIV_K' : int(is_tk_div_k)
'TYPE': dtype, 'STRIDE_AM': 'lda' if is_a_row else '1', 'STRIDE_AK': '1' if is_a_row else 'lda',
'STRIDE_BK': 'ldb' if is_b_row else '1', 'STRIDE_BN': '1' if is_b_row else 'ldb', 'LDA_POW2_DIV':
lda_pow2_div, 'LDB_POW2_DIV': ldb_pow2_div, 'LDC_POW2_DIV': ldc_pow2_div, 'IS_TK_DIV_K':
int(is_tk_div_k)
}
_matmul._kernels[key] = triton.kernel(_matmul.src, device, defines=defines,
autotune_vals = _matmul._CONFIGS, autotune_key=['M', 'N', 'K'])
_matmul._kernels[key] = triton.kernel(_matmul.src,
device,
defines=defines,
autotune_vals=_matmul._CONFIGS,
autotune_key=['M', 'N', 'K'])
kernel = _matmul._kernels[key]
# # locks for split-k
if device not in _matmul._locks:
_matmul._locks[device] = torch.zeros(1024*1024, dtype=torch.int32, device=device)
_matmul._locks[device] = torch.zeros(1024 * 1024, dtype=torch.int32, device=device)
locks = _matmul._locks[device]
# enqueue
alpha = 1.
@@ -81,7 +79,7 @@ class _matmul(torch.autograd.Function):
@staticmethod
def forward(ctx, a, b):
c = _matmul._call(a,b)
c = _matmul._call(a, b)
return c
matmul = _matmul.apply

View File

@@ -4,23 +4,22 @@ import os
fwd_src = triton.read(os.path.join(os.path.dirname(__file__), 'softmax.c'), kernel_names=['forward'])
fwd_kernels = dict()
def get_fwd_kernel(block, dtype, device):
key = (block, dtype, device)
if key not in fwd_kernels:
defines = {'BLOCK': block, 'TYPE': dtype}
fwd_kernels[key] = triton.kernel(fwd_src, device = device, defines = defines)
fwd_kernels[key] = triton.kernel(fwd_src, device=device, defines=defines)
return fwd_kernels[key]
class _softmax(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
y = torch.empty_like(x)
M, N = x.shape
kernel = get_fwd_kernel(N, x.dtype, x.device)
kernel(x.data_ptr(), y.data_ptr(), grid = lambda opt: [M, ])
grid = lambda opt: (M, )
kernel(x.data_ptr(), y.data_ptr(), grid=grid)
return y
softmax = _softmax.apply