[BACKEND] Keren/shared memory barrier (#59)

This commit is contained in:
Keren Zhou
2022-08-18 12:32:57 -07:00
committed by GitHub
parent 8776ad1a0e
commit e0bedeb44c
13 changed files with 904 additions and 278 deletions

View File

@@ -1,5 +1,6 @@
#include "triton/Analysis/Allocation.h"
#include "mlir/Analysis/Liveness.h"
#include "mlir/Analysis/SliceAnalysis.h"
#include "triton/Dialect/TritonGPU/IR/Dialect.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
@@ -10,191 +11,255 @@
namespace mlir {
void AllocationAnalysis::run() {
ValueRangeMapT valueRange;
resolveLiveness(valueRange);
computeOffsets(valueRange);
}
//===----------------------------------------------------------------------===//
// Shared Memory Allocation Analysis
//===----------------------------------------------------------------------===//
namespace triton {
class AllocationAnalysis {
public:
AllocationAnalysis(Operation *operation, Allocation *allocation)
: operation(operation), allocation(allocation) {
run();
}
void AllocationAnalysis::resolveLiveness(
AllocationAnalysis::ValueRangeMapT &valueRange) {
Liveness liveness(operation);
DenseMap<Operation *, size_t> operationIds;
operation->walk<WalkOrder::PreOrder>([&](Operation *op) {
operationIds.insert({op, operationIds.size()});
});
private:
using BufferT = Allocation::BufferT;
operation->walk<WalkOrder::PreOrder>([&](Operation *op) {
/// Value -> Liveness Range
/// Use MapVector to ensure determinism.
using BufferRangeMapT = llvm::MapVector<BufferT *, Range<size_t>>;
/// Nodes -> Nodes
using GraphT = DenseMap<BufferT *, DenseSet<BufferT *>>;
void run() {
getValuesAndSizes();
resolveLiveness();
computeOffsets();
}
/// Initializes explicitly defined shared memory values for a given operation.
void getExplicitValueSize(Operation *op) {
for (Value result : op->getResults()) {
auto liveOperations = liveness.resolveLiveness(result);
auto minId = std::numeric_limits<size_t>::max();
auto maxId = std::numeric_limits<size_t>::min();
std::for_each(liveOperations.begin(), liveOperations.end(),
[&](Operation *liveOp) {
if (operationIds[liveOp] < minId) {
minId = operationIds[liveOp];
}
if (operationIds[liveOp] > maxId) {
maxId = operationIds[liveOp];
}
});
valueRange.insert({result, Range(minId, maxId + 1)});
auto type = result.getType();
if (auto tensorType = type.dyn_cast<RankedTensorType>()) {
auto encoding = tensorType.getEncoding();
if (encoding &&
encoding.isa<triton::gpu::TritonGPUSharedEncodingAttr>()) {
// Bytes could be a different value once we support padding or other
// allocation policies.
auto bytes = tensorType.getNumElements() *
tensorType.getElementTypeBitWidth() / 8;
allocation->addBuffer<BufferT::BufferKind::Explicit>(result, bytes);
}
}
}
});
}
}
void AllocationAnalysis::getSharedMemoryValuesAndSizes(
const AllocationAnalysis::ValueRangeMapT &valueRange,
SmallVector<Value> &sharedMemoryValues) {
for (auto &valueRange : valueRange) {
auto value = valueRange.first;
auto type = value.getType();
if (auto tensorType = type.dyn_cast<RankedTensorType>()) {
auto encoding = tensorType.getEncoding();
if (encoding &&
encoding.isa<triton::gpu::TritonGPUSharedEncodingAttr>()) {
// Bytes could be a different value once we support padding or other
// allocation policies.
/// Initializes temporary shared memory for a given operation.
void getScratchValueSize(Operation *op) {
// TODO(Keren): Add atomic ops
// TODO(Keren): Add convert ops
if (auto reduceOp = dyn_cast<triton::ReduceOp>(op)) {
// TODO(Keren): Reduce with index is not supported yet.
auto value = op->getOperand(0);
if (auto tensorType = value.getType().dyn_cast<RankedTensorType>()) {
auto bytes = tensorType.getNumElements() *
tensorType.getElementTypeBitWidth() / 8;
sharedMemoryValues.emplace_back(value);
valueSize.insert({value, bytes});
allocation->addBuffer<BufferT::BufferKind::Scratch>(op, bytes);
}
}
}
}
void AllocationAnalysis::calculateSharedMemoryStarts(
const AllocationAnalysis::ValueRangeMapT &valueRange,
const SmallVector<Value> &sharedMemoryValues,
ValueSizeMapT &sharedMemoryStart) {
// v = values in shared memory
// t = triplet of (size, start, end)
// shared memory space
// -
// | *******t4
// | /|\ v2 inserts t4, t5, and t6
// | |
// | ******t5 ************t6
// | ^^^^^v2^^^^^^
// | | *********************t2
// | \|/ v2 erases t1
// | ******t1 ^^^^^^^^^v1^^^^^^^^^ ************t3
// |---------------------------------------------| liveness range
// 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ...
TripleMapT tripleMap;
tripleMap.insert(std::make_pair(0, Range<size_t>()));
SmallVector<Value> values = sharedMemoryValues;
while (!values.empty()) {
auto tripleIt = tripleMap.begin();
auto size = tripleIt->first;
auto range = tripleIt->second;
tripleMap.erase(tripleIt);
auto valueIt = std::find_if(values.begin(), values.end(), [&](Value value) {
auto xRange = valueRange.lookup(value);
bool res = xRange.intersects(range);
for (auto val : tripleMap)
res = res && !val.second.intersects(xRange);
return res;
/// Extract all shared memory values and their sizes
void getValuesAndSizes() {
operation->walk<WalkOrder::PreOrder>([&](Operation *op) {
getExplicitValueSize(op);
getScratchValueSize(op);
});
if (valueIt != values.end()) {
auto value = *valueIt;
auto xSize = valueSize.lookup(value);
auto xRange = valueRange.lookup(value);
sharedMemoryStart[value] = size;
tripleMap.insert(
{size + xSize, Range{std::max(range.start(), xRange.start()),
std::min(range.end(), xRange.end())}});
if (range.start() < xRange.start())
tripleMap.insert({size, Range{range.start(), xRange.end()}});
if (xRange.end() < range.end())
tripleMap.insert({size, Range{xRange.start(), range.end()}});
values.erase(valueIt);
}
}
}
void AllocationAnalysis::buildInterferenceGraph(
const AllocationAnalysis::ValueRangeMapT &valueRange,
const SmallVector<Value> &sharedMemoryValues,
const ValueSizeMapT &sharedMemoryStart, GraphT &interference) {
for (auto x : sharedMemoryValues) {
for (auto y : sharedMemoryValues) {
if (x == y)
continue;
auto xStart = sharedMemoryStart.lookup(x);
auto yStart = sharedMemoryStart.lookup(y);
auto xSize = valueSize.lookup(x);
auto ySize = valueSize.lookup(y);
Range xSizeRange = {xStart, xStart + xSize};
Range ySizeRange = {yStart, yStart + ySize};
auto xOpRange = valueRange.lookup(x);
auto yOpRange = valueRange.lookup(y);
if (xOpRange.intersects(yOpRange) && xSizeRange.intersects(ySizeRange)) {
interference[x].insert(y);
/// Resolves liveness of all values involved under the root operation.
void resolveLiveness() {
// In the SCF dialect, we always have a sequentially nested structure of
// blocks
DenseMap<Operation *, size_t> operationId;
operation->walk<WalkOrder::PreOrder>(
[&](Operation *op) { operationId[op] = operationId.size(); });
Liveness liveness(operation);
operation->walk<WalkOrder::PreOrder>([&](Operation *op) {
for (Value result : op->getResults()) {
auto liveOperations = liveness.resolveLiveness(result);
auto minId = std::numeric_limits<size_t>::max();
auto maxId = std::numeric_limits<size_t>::min();
std::for_each(liveOperations.begin(), liveOperations.end(),
[&](Operation *liveOp) {
if (operationId[liveOp] < minId) {
minId = operationId[liveOp];
}
if (operationId[liveOp] > maxId) {
maxId = operationId[liveOp];
}
});
if (allocation->valueBuffer.count(result)) {
auto *buffer = allocation->valueBuffer[result];
bufferRange.insert({buffer, Range(minId, maxId + 1)});
}
}
if (allocation->opScratch.count(op)) {
// Any scratch memory's live range is the current operation's live
// range.
auto *buffer = allocation->opScratch[op];
bufferRange.insert(
{buffer, Range(operationId[op], operationId[op] + 1)});
}
});
}
/// Computes the shared memory offsets for all related values.
/// Paper: Algorithms for Compile-Time Memory Optimization
/// (https://www.cs.utexas.edu/users/harrison/papers/compile-time.pdf)
void computeOffsets() {
SmallVector<BufferT *> buffers;
for (auto bufferIter : bufferRange) {
buffers.emplace_back(bufferIter.first);
}
DenseMap<BufferT *, size_t> bufferStart;
calculateStarts(buffers, bufferStart);
GraphT interference;
buildInterferenceGraph(buffers, bufferStart, interference);
allocate(buffers, bufferStart, interference);
}
/// Computes the initial shared memory offsets.
void calculateStarts(const SmallVector<BufferT *> &buffers,
DenseMap<BufferT *, size_t> &bufferStart) {
// v = values in shared memory
// t = triplet of (size, start, end)
// shared memory space
// -
// | *******t4
// | /|\ v2 inserts t4, t5, and t6
// | |
// | ******t5 ************t6
// | ^^^^^v2^^^^^^
// | | *********************t2
// | \|/ v2 erases t1
// | ******t1 ^^^^^^^^^v1^^^^^^^^^ ************t3
// |---------------------------------------------| liveness range
// 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ...
/// Start -> Liveness Range
using TripleMapT = std::multimap<size_t, Range<size_t>>;
TripleMapT tripleMap;
tripleMap.insert(std::make_pair(0, Range<size_t>()));
SmallVector<BufferT *> xBuffers = buffers;
while (!xBuffers.empty()) {
auto tripleIt = tripleMap.begin();
auto size = tripleIt->first;
auto range = tripleIt->second;
tripleMap.erase(tripleIt);
auto bufferIt =
std::find_if(xBuffers.begin(), xBuffers.end(), [&](auto *buffer) {
auto xRange = bufferRange[buffer];
bool res = xRange.intersects(range);
for (auto val : tripleMap)
res = res && !val.second.intersects(xRange);
return res;
});
if (bufferIt != xBuffers.end()) {
auto buffer = *bufferIt;
auto xSize = buffer->size;
auto xRange = bufferRange.lookup(buffer);
bufferStart[buffer] = size;
tripleMap.insert(
{size + xSize, Range{std::max(range.start(), xRange.start()),
std::min(range.end(), xRange.end())}});
if (range.start() < xRange.start())
tripleMap.insert({size, Range{range.start(), xRange.end()}});
if (xRange.end() < range.end())
tripleMap.insert({size, Range{xRange.start(), range.end()}});
xBuffers.erase(bufferIt);
}
}
}
}
void AllocationAnalysis::allocateSharedMemory(
const AllocationAnalysis::ValueRangeMapT &valueRangeMap,
const SmallVector<Value> &sharedMemoryValues,
const AllocationAnalysis::ValueSizeMapT &sharedMemoryStart,
const AllocationAnalysis::GraphT &interference) {
// First-fit graph coloring
// Neighbors are nodes that interfere with each other.
// We color a node by finding the index of the first available non-neighboring
// node or the first neighboring node without any color.
// Nodes with the same color do not interfere with each other.
DenseMap<Value, int> colors;
for (auto value : sharedMemoryValues) {
colors[value] = (value == sharedMemoryValues[0]) ? 0 : -1;
}
SmallVector<bool> available(sharedMemoryValues.size());
for (auto x : sharedMemoryValues) {
std::fill(available.begin(), available.end(), true);
for (auto y : interference.lookup(x)) {
int color = colors[y];
if (color >= 0) {
available[color] = false;
/// Builds a graph of all shared memory values. Edges are created between
/// shared memory values that are overlapping.
void buildInterferenceGraph(const SmallVector<BufferT *> &buffers,
const DenseMap<BufferT *, size_t> &bufferStart,
GraphT &interference) {
for (auto x : buffers) {
for (auto y : buffers) {
if (x == y)
continue;
auto xStart = bufferStart.lookup(x);
auto yStart = bufferStart.lookup(y);
auto xSize = x->size;
auto ySize = y->size;
Range xSizeRange = {xStart, xStart + xSize};
Range ySizeRange = {yStart, yStart + ySize};
auto xOpRange = bufferRange.lookup(x);
auto yOpRange = bufferRange.lookup(y);
if (xOpRange.intersects(yOpRange) &&
xSizeRange.intersects(ySizeRange)) {
interference[x].insert(y);
}
}
}
auto it = std::find(available.begin(), available.end(), true);
colors[x] = std::distance(available.begin(), it);
}
// Finalize allocation
// color0: [0, 7), [0, 8), [0, 15) -> [0, 7), [0, 8), [0, 15)
// color1: [7, 9) -> [0 + 1 * 15, 9 + 1 * 15) -> [15, 24)
// color2: [8, 12) -> [8 + 2 * 15, 12 + 2 * 15) -> [38, 42)
// TODO(Keren): We are wasting memory here.
// Nodes with color2 can actually start with 24.
for (auto x : sharedMemoryValues) {
size_t adj = 0;
for (auto y : interference.lookup(x)) {
adj = std::max(adj, sharedMemoryStart.lookup(y) + valueSize.lookup(y));
/// Finalizes shared memory offsets considering interference.
void allocate(const SmallVector<BufferT *> &buffers,
const DenseMap<BufferT *, size_t> &bufferStart,
const GraphT &interference) {
// First-fit graph coloring
// Neighbors are nodes that interfere with each other.
// We color a node by finding the index of the first available
// non-neighboring node or the first neighboring node without any color.
// Nodes with the same color do not interfere with each other.
DenseMap<BufferT *, int> colors;
for (auto value : buffers) {
colors[value] = (value == buffers[0]) ? 0 : -1;
}
SmallVector<bool> available(buffers.size());
for (auto x : buffers) {
std::fill(available.begin(), available.end(), true);
for (auto y : interference.lookup(x)) {
int color = colors[y];
if (color >= 0) {
available[color] = false;
}
}
auto it = std::find(available.begin(), available.end(), true);
colors[x] = std::distance(available.begin(), it);
}
// Finalize allocation
// color0: [0, 7), [0, 8), [0, 15) -> [0, 7), [0, 8), [0, 15)
// color1: [7, 9) -> [0 + 1 * 15, 9 + 1 * 15) -> [15, 24)
// color2: [8, 12) -> [8 + 2 * 15, 12 + 2 * 15) -> [38, 42)
// TODO(Keren): We are wasting memory here.
// Nodes with color2 can actually start with 24.
for (auto x : buffers) {
size_t adj = 0;
for (auto y : interference.lookup(x)) {
adj = std::max(adj, bufferStart.lookup(y) + y->size);
}
x->offset = bufferStart.lookup(x) + colors.lookup(x) * adj;
allocation->sharedMemorySize =
std::max(allocation->sharedMemorySize, x->offset + x->size);
}
valueOffset[x] = sharedMemoryStart.lookup(x) + colors.lookup(x) * adj;
sharedMemorySize =
std::max(sharedMemorySize, valueOffset[x] + valueSize.lookup(x));
}
}
void AllocationAnalysis::computeOffsets(
const AllocationAnalysis::ValueRangeMapT &valueRange) {
SmallVector<Value> sharedMemoryValues;
getSharedMemoryValuesAndSizes(valueRange, sharedMemoryValues);
private:
Operation *operation;
Allocation *allocation;
BufferRangeMapT bufferRange;
};
} // namespace triton
ValueSizeMapT sharedMemoryStart;
calculateSharedMemoryStarts(valueRange, sharedMemoryValues,
sharedMemoryStart);
GraphT interference;
buildInterferenceGraph(valueRange, sharedMemoryValues, sharedMemoryStart,
interference);
allocateSharedMemory(valueRange, sharedMemoryValues, sharedMemoryStart,
interference);
}
void Allocation::run() { triton::AllocationAnalysis(getOperation(), this); }
} // namespace mlir