[BACKEND] Keren/shared memory barrier (#59)
This commit is contained in:
@@ -14,6 +14,7 @@ namespace mlir {
|
|||||||
namespace test {
|
namespace test {
|
||||||
void registerTestAlignmentPass();
|
void registerTestAlignmentPass();
|
||||||
void registerTestAllocationPass();
|
void registerTestAllocationPass();
|
||||||
|
void registerTestMembarPass();
|
||||||
} // namespace test
|
} // namespace test
|
||||||
} // namespace mlir
|
} // namespace mlir
|
||||||
|
|
||||||
@@ -23,6 +24,7 @@ int main(int argc, char **argv) {
|
|||||||
mlir::registerTritonGPUPasses();
|
mlir::registerTritonGPUPasses();
|
||||||
mlir::test::registerTestAlignmentPass();
|
mlir::test::registerTestAlignmentPass();
|
||||||
mlir::test::registerTestAllocationPass();
|
mlir::test::registerTestAllocationPass();
|
||||||
|
mlir::test::registerTestMembarPass();
|
||||||
mlir::triton::registerConvertTritonToTritonGPUPass();
|
mlir::triton::registerConvertTritonToTritonGPUPass();
|
||||||
mlir::triton::registerConvertTritonGPUToLLVMPass();
|
mlir::triton::registerConvertTritonGPUToLLVMPass();
|
||||||
|
|
||||||
|
@@ -4,23 +4,28 @@
|
|||||||
#include "llvm/ADT/DenseMap.h"
|
#include "llvm/ADT/DenseMap.h"
|
||||||
#include "llvm/ADT/MapVector.h"
|
#include "llvm/ADT/MapVector.h"
|
||||||
#include "llvm/Support/raw_ostream.h"
|
#include "llvm/Support/raw_ostream.h"
|
||||||
#include <limits>
|
|
||||||
|
|
||||||
#include "triton/Dialect/TritonGPU/IR/Dialect.h"
|
#include "triton/Dialect/TritonGPU/IR/Dialect.h"
|
||||||
|
#include <atomic>
|
||||||
|
#include <limits>
|
||||||
|
|
||||||
namespace mlir {
|
namespace mlir {
|
||||||
|
|
||||||
|
namespace triton {
|
||||||
|
class AllocationAnalysis;
|
||||||
|
}
|
||||||
|
|
||||||
/// Modified from llvm-15.0: llvm/ADT/AddressRanges.h
|
/// Modified from llvm-15.0: llvm/ADT/AddressRanges.h
|
||||||
/// A class that represents an address range. The range is specified using
|
/// A class that represents a range, specified using a start and an end values:
|
||||||
/// a start and an end address: [Start, End).
|
/// [Start, End).
|
||||||
template <typename AddrT> class Range {
|
template <typename T> class Range {
|
||||||
public:
|
public:
|
||||||
Range() {}
|
Range() {}
|
||||||
Range(AddrT S, AddrT E) : Start(S), End(E) { assert(Start <= End); }
|
Range(T S, T E) : Start(S), End(E) { assert(Start <= End); }
|
||||||
AddrT start() const { return Start; }
|
T start() const { return Start; }
|
||||||
AddrT end() const { return End; }
|
T end() const { return End; }
|
||||||
AddrT size() const { return End - Start; }
|
T size() const { return End - Start; }
|
||||||
bool contains(AddrT Addr) const { return Start <= Addr && Addr < End; }
|
bool contains(T Addr) const { return Start <= Addr && Addr < End; }
|
||||||
bool intersects(const Range &R) const {
|
bool intersects(const Range &R) const {
|
||||||
return Start < R.End && R.Start < End;
|
return Start < R.End && R.Start < End;
|
||||||
}
|
}
|
||||||
@@ -33,83 +38,122 @@ public:
|
|||||||
}
|
}
|
||||||
|
|
||||||
private:
|
private:
|
||||||
AddrT Start = std::numeric_limits<AddrT>::min();
|
T Start = std::numeric_limits<T>::min();
|
||||||
AddrT End = std::numeric_limits<AddrT>::max();
|
T End = std::numeric_limits<T>::max();
|
||||||
};
|
};
|
||||||
|
|
||||||
//===----------------------------------------------------------------------===//
|
class Allocation {
|
||||||
// Shared Memory Allocation Analysis
|
|
||||||
//===----------------------------------------------------------------------===//
|
|
||||||
class AllocationAnalysis {
|
|
||||||
public:
|
public:
|
||||||
using ValueSizeMapT = llvm::DenseMap<Value, size_t>;
|
/// A unique identifier for shared memory buffers
|
||||||
|
using BufferId = size_t;
|
||||||
|
static constexpr BufferId InvalidBufferId =
|
||||||
|
std::numeric_limits<BufferId>::max();
|
||||||
|
|
||||||
public:
|
|
||||||
/// Creates a new Allocation analysis that computes the shared memory
|
/// Creates a new Allocation analysis that computes the shared memory
|
||||||
/// information for all associated shared memory values.
|
/// information for all associated shared memory values.
|
||||||
AllocationAnalysis(Operation *operation) : operation(operation) { run(); }
|
Allocation(Operation *operation) : operation(operation) { run(); }
|
||||||
|
|
||||||
/// Returns the operation this analysis was constructed from.
|
/// Returns the operation this analysis was constructed from.
|
||||||
Operation *getOperation() const { return operation; }
|
Operation *getOperation() const { return operation; }
|
||||||
|
|
||||||
/// Returns the offset of the given value in the shared memory.
|
/// Returns the offset of the given buffer in the shared memory.
|
||||||
size_t getOffset(Value value) const { return valueOffset.lookup(value); }
|
size_t getOffset(BufferId bufferId) const {
|
||||||
|
return bufferSet.lookup(bufferId).offset;
|
||||||
|
}
|
||||||
|
|
||||||
/// Returns the size of the given value in the shared memory.
|
/// Returns the size of the given buffer in the shared memory.
|
||||||
size_t getAllocatedSize(Value value) const { return valueSize.lookup(value); }
|
size_t getAllocatedSize(BufferId bufferId) const {
|
||||||
|
return bufferSet.lookup(bufferId).size;
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Returns the buffer id of the given value.
|
||||||
|
BufferId getBufferId(Value value) const {
|
||||||
|
if (valueBuffer.count(value)) {
|
||||||
|
return valueBuffer.lookup(value)->id;
|
||||||
|
} else {
|
||||||
|
return InvalidBufferId;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Returns the scratch buffer id of the given value.
|
||||||
|
BufferId getBufferId(Operation *operation) const {
|
||||||
|
if (opScratch.count(operation)) {
|
||||||
|
return opScratch.lookup(operation)->id;
|
||||||
|
} else {
|
||||||
|
return InvalidBufferId;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
/// Returns the size of total shared memory allocated
|
/// Returns the size of total shared memory allocated
|
||||||
size_t getSharedMemorySize() const { return sharedMemorySize; }
|
size_t getSharedMemorySize() const { return sharedMemorySize; }
|
||||||
|
|
||||||
private:
|
bool isIntersected(BufferId lhsId, BufferId rhsId) const {
|
||||||
/// Value -> Range
|
if (lhsId == InvalidBufferId || rhsId == InvalidBufferId)
|
||||||
/// Use MapVector to ensure determinism.
|
return false;
|
||||||
using ValueRangeMapT = llvm::MapVector<Value, Range<size_t>>;
|
auto lhsBuffer = bufferSet.lookup(lhsId);
|
||||||
/// Start -> Range
|
auto rhsBuffer = bufferSet.lookup(rhsId);
|
||||||
using TripleMapT = std::multimap<size_t, Range<size_t>>;
|
return lhsBuffer.intersects(rhsBuffer);
|
||||||
/// Nodes -> Nodes
|
}
|
||||||
using GraphT = DenseMap<Value, DenseSet<Value>>;
|
|
||||||
|
|
||||||
|
private:
|
||||||
|
/// A class that represents a shared memory buffer
|
||||||
|
struct BufferT {
|
||||||
|
enum class BufferKind { Explicit, Scratch };
|
||||||
|
|
||||||
|
/// MT: thread-safe
|
||||||
|
inline static std::atomic<BufferId> nextId = 0;
|
||||||
|
|
||||||
|
BufferKind kind;
|
||||||
|
BufferId id;
|
||||||
|
size_t size;
|
||||||
|
size_t offset;
|
||||||
|
|
||||||
|
bool operator==(const BufferT &other) const { return id == other.id; }
|
||||||
|
bool operator<(const BufferT &other) const { return id < other.id; }
|
||||||
|
|
||||||
|
BufferT() : BufferT(BufferKind::Explicit) {}
|
||||||
|
BufferT(BufferKind kind) : BufferT(kind, 0, 0) {}
|
||||||
|
BufferT(BufferKind kind, size_t size) : BufferT(kind, size, 0) {}
|
||||||
|
BufferT(BufferKind kind, size_t size, size_t offset)
|
||||||
|
: kind(kind), size(size), offset(offset), id(nextId++) {}
|
||||||
|
|
||||||
|
bool intersects(const BufferT &other) const {
|
||||||
|
return Range<size_t>(offset, offset + size)
|
||||||
|
.intersects(Range<size_t>(other.offset, other.offset + other.size));
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
/// Op -> Scratch Buffer
|
||||||
|
using OpScratchMapT = DenseMap<Operation *, BufferT *>;
|
||||||
|
/// Value -> Explicit Buffer
|
||||||
|
using ValueBufferMapT = DenseMap<Value, BufferT *>;
|
||||||
|
/// BufferId -> Buffer
|
||||||
|
using BufferSetT = DenseMap<BufferId, BufferT>;
|
||||||
/// Runs allocation analysis on the given top-level operation.
|
/// Runs allocation analysis on the given top-level operation.
|
||||||
void run();
|
void run();
|
||||||
|
|
||||||
/// Resolves liveness of all values involved under the root operation.
|
private:
|
||||||
void resolveLiveness(ValueRangeMapT &valueRangeMap);
|
template <BufferT::BufferKind Kind, typename KeyType, typename... Args>
|
||||||
|
void addBuffer(KeyType &key, Args &&... args) {
|
||||||
/// Computes the shared memory offsets for all related values.
|
auto buffer = BufferT(Kind, std::forward<Args>(args)...);
|
||||||
/// Paper: Algorithms for Compile-Time Memory Optimization
|
bufferSet[buffer.id] = std::move(buffer);
|
||||||
/// (https://www.cs.utexas.edu/users/harrison/papers/compile-time.pdf)
|
if constexpr (Kind == BufferT::BufferKind::Explicit) {
|
||||||
void computeOffsets(const ValueRangeMapT &valueRangeMap);
|
valueBuffer[key] = &bufferSet[buffer.id];
|
||||||
|
} else {
|
||||||
/// Gets shared memory value and size from valueRangeMap.
|
opScratch[key] = &bufferSet[buffer.id];
|
||||||
void getSharedMemoryValuesAndSizes(const ValueRangeMapT &valueRangeMap,
|
}
|
||||||
SmallVector<Value> &sharedMemoryValues);
|
}
|
||||||
|
|
||||||
/// Computes the initial shared memory offsets.
|
|
||||||
void calculateSharedMemoryStarts(const ValueRangeMapT &valueRangeMap,
|
|
||||||
const SmallVector<Value> &sharedMemoryValues,
|
|
||||||
ValueSizeMapT &sharedMemoryStart);
|
|
||||||
|
|
||||||
/// Builds a graph of all shared memory values. Edges are created between
|
|
||||||
/// between shared memory values that are overlapping.
|
|
||||||
void buildInterferenceGraph(const ValueRangeMapT &valueRangeMap,
|
|
||||||
const SmallVector<Value> &sharedMemoryValues,
|
|
||||||
const ValueSizeMapT &sharedMemoryStart,
|
|
||||||
GraphT &interference);
|
|
||||||
|
|
||||||
/// Finalizes shared memory offsets considering interference.
|
|
||||||
void allocateSharedMemory(const ValueRangeMapT &valueRangeMap,
|
|
||||||
const SmallVector<Value> &sharedMemoryValues,
|
|
||||||
const ValueSizeMapT &sharedMemoryStart,
|
|
||||||
const GraphT &interference);
|
|
||||||
|
|
||||||
private:
|
private:
|
||||||
Operation *operation;
|
Operation *operation;
|
||||||
ValueSizeMapT valueOffset;
|
OpScratchMapT opScratch;
|
||||||
ValueSizeMapT valueSize;
|
ValueBufferMapT valueBuffer;
|
||||||
|
BufferSetT bufferSet;
|
||||||
size_t sharedMemorySize = 0;
|
size_t sharedMemorySize = 0;
|
||||||
|
|
||||||
|
friend class triton::AllocationAnalysis;
|
||||||
};
|
};
|
||||||
|
|
||||||
} // namespace mlir
|
} // namespace mlir
|
||||||
|
|
||||||
#endif
|
#endif // TRITON_ANALYSIS_ALLOCATION_H
|
||||||
|
115
include/triton/Analysis/Membar.h
Normal file
115
include/triton/Analysis/Membar.h
Normal file
@@ -0,0 +1,115 @@
|
|||||||
|
#ifndef TRITON_ANALYSIS_MEMBAR_H
|
||||||
|
#define TRITON_ANALYSIS_MEMBAR_H
|
||||||
|
|
||||||
|
#include "Allocation.h"
|
||||||
|
#include "llvm/ADT/SmallPtrSet.h"
|
||||||
|
|
||||||
|
namespace mlir {
|
||||||
|
|
||||||
|
class OpBuilder;
|
||||||
|
|
||||||
|
//===----------------------------------------------------------------------===//
|
||||||
|
// Shared Memory Barrier Analysis
|
||||||
|
//===----------------------------------------------------------------------===//
|
||||||
|
class MembarAnalysis {
|
||||||
|
public:
|
||||||
|
/// Creates a new Membar analysis that generates the shared memory barrier
|
||||||
|
/// in the following circumstances:
|
||||||
|
/// - RAW: If a shared memory write is followed by a shared memory read, and
|
||||||
|
/// their addresses are intersected, a barrier is inserted.
|
||||||
|
/// - WAR: If a shared memory read is followed by a shared memory read, and
|
||||||
|
/// their addresses are intersected, a barrier is inserted.
|
||||||
|
/// The following circumstances do not require a barrier:
|
||||||
|
/// - WAW: not possible because overlapped memory allocation is not allowed.
|
||||||
|
/// - RAR: no write is performed.
|
||||||
|
/// Temporary storage of operations such as Reduce are considered as both
|
||||||
|
/// a shared memory read. If the temporary storage is written but not read,
|
||||||
|
/// it is considered as the problem of the operation itself but not the membar
|
||||||
|
/// analysis.
|
||||||
|
/// The following circumstances are not considered yet:
|
||||||
|
/// - Double buffers
|
||||||
|
/// - N buffers
|
||||||
|
MembarAnalysis(Allocation *allocation) : allocation(allocation) { run(); }
|
||||||
|
|
||||||
|
private:
|
||||||
|
struct RegionInfo {
|
||||||
|
using BufferIdSetT = DenseSet<Allocation::BufferId>;
|
||||||
|
|
||||||
|
BufferIdSetT syncReadBuffers;
|
||||||
|
BufferIdSetT syncWriteBuffers;
|
||||||
|
|
||||||
|
RegionInfo() = default;
|
||||||
|
RegionInfo(const BufferIdSetT &syncReadBuffers,
|
||||||
|
const BufferIdSetT &syncWriteBuffers)
|
||||||
|
: syncReadBuffers(syncReadBuffers), syncWriteBuffers(syncWriteBuffers) {
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Unions two RegionInfo objects.
|
||||||
|
void join(const RegionInfo &other) {
|
||||||
|
syncReadBuffers.insert(other.syncReadBuffers.begin(),
|
||||||
|
other.syncReadBuffers.end());
|
||||||
|
syncWriteBuffers.insert(other.syncWriteBuffers.begin(),
|
||||||
|
other.syncWriteBuffers.end());
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Returns true if buffers in two RegionInfo objects are intersected.
|
||||||
|
bool isIntersected(const RegionInfo &other, Allocation *allocation) const {
|
||||||
|
return /*RAW*/ isIntersected(syncWriteBuffers, other.syncReadBuffers,
|
||||||
|
allocation) ||
|
||||||
|
/*WAR*/ isIntersected(syncReadBuffers, other.syncWriteBuffers,
|
||||||
|
allocation);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Clears the buffers because a barrier is inserted.
|
||||||
|
void sync() {
|
||||||
|
syncReadBuffers.clear();
|
||||||
|
syncWriteBuffers.clear();
|
||||||
|
}
|
||||||
|
|
||||||
|
private:
|
||||||
|
/// Returns true if buffers in two sets are intersected.
|
||||||
|
bool isIntersected(const BufferIdSetT &lhs, const BufferIdSetT &rhs,
|
||||||
|
Allocation *allocation) const {
|
||||||
|
return std::any_of(lhs.begin(), lhs.end(), [&](auto lhsId) {
|
||||||
|
return std::any_of(rhs.begin(), rhs.end(), [&](auto rhsId) {
|
||||||
|
return allocation->isIntersected(lhsId, rhsId);
|
||||||
|
});
|
||||||
|
});
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
/// Runs the membar analysis to the given operation, inserts a barrier if
|
||||||
|
/// necessary.
|
||||||
|
void run();
|
||||||
|
|
||||||
|
/// Applies the barrier analysis based on the SCF dialect, in which each
|
||||||
|
/// region has a single basic block only.
|
||||||
|
/// Example:
|
||||||
|
/// region1
|
||||||
|
/// op1
|
||||||
|
/// op2 (scf.if)
|
||||||
|
/// region2
|
||||||
|
/// op3
|
||||||
|
/// op4
|
||||||
|
/// region3
|
||||||
|
/// op5
|
||||||
|
/// op6
|
||||||
|
/// op7
|
||||||
|
/// region2 and region3 started with the information of region1.
|
||||||
|
/// Each region is analyzed separately and keeps their own copy of the
|
||||||
|
/// information. At op7, we union the information of the region2 and region3
|
||||||
|
/// and update the information of region1.
|
||||||
|
void dfsOperation(Operation *operation, RegionInfo *blockInfo,
|
||||||
|
OpBuilder *builder);
|
||||||
|
|
||||||
|
/// Updates the RegionInfo operation based on the operation.
|
||||||
|
void transfer(Operation *operation, RegionInfo *blockInfo,
|
||||||
|
OpBuilder *builder);
|
||||||
|
|
||||||
|
private:
|
||||||
|
Allocation *allocation;
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace mlir
|
||||||
|
|
||||||
|
#endif // TRITON_ANALYSIS_MEMBAR_H
|
@@ -1,6 +1,7 @@
|
|||||||
#ifndef TRITON_DIALECT_TRITON_IR_DIALECT_H_
|
#ifndef TRITON_DIALECT_TRITON_IR_DIALECT_H_
|
||||||
#define TRITON_DIALECT_TRITON_IR_DIALECT_H_
|
#define TRITON_DIALECT_TRITON_IR_DIALECT_H_
|
||||||
|
|
||||||
|
#include "mlir/Dialect/GPU/GPUDialect.h"
|
||||||
#include "mlir/Dialect/SCF/SCF.h"
|
#include "mlir/Dialect/SCF/SCF.h"
|
||||||
#include "mlir/Dialect/StandardOps/IR/Ops.h"
|
#include "mlir/Dialect/StandardOps/IR/Ops.h"
|
||||||
#include "mlir/IR/BuiltinOps.h"
|
#include "mlir/IR/BuiltinOps.h"
|
||||||
|
@@ -228,13 +228,13 @@ def TT_DotOp : TT_Op<"dot", [NoSideEffect,
|
|||||||
def TT_ReduceOp : TT_Op<"reduce"> {
|
def TT_ReduceOp : TT_Op<"reduce"> {
|
||||||
let summary = "reduce";
|
let summary = "reduce";
|
||||||
|
|
||||||
let arguments = (ins TT_RedOpAttr:$redOp, TT_Type:$operand, I32Attr:$axis);
|
let arguments = (ins TT_RedOpAttr:$redOp, TT_Tensor:$operand, I32Attr:$axis);
|
||||||
|
|
||||||
let results = (outs TT_Type:$result);
|
let results = (outs TT_Tensor:$result);
|
||||||
|
|
||||||
// let builders = [
|
let builders = [
|
||||||
// OpBuilder<(ins "triton::RedOp":$redOp, "value":$operand, "int":$axis)>,
|
OpBuilder<(ins "triton::RedOp":$redOp, "Value":$operand, "int":$axis)>,
|
||||||
// ];
|
];
|
||||||
|
|
||||||
let assemblyFormat = "$operand attr-dict `:` type($operand) `->` type($result)";
|
let assemblyFormat = "$operand attr-dict `:` type($operand) `->` type($result)";
|
||||||
}
|
}
|
||||||
|
@@ -1,5 +1,6 @@
|
|||||||
#include "triton/Analysis/Allocation.h"
|
#include "triton/Analysis/Allocation.h"
|
||||||
#include "mlir/Analysis/Liveness.h"
|
#include "mlir/Analysis/Liveness.h"
|
||||||
|
#include "mlir/Analysis/SliceAnalysis.h"
|
||||||
#include "triton/Dialect/TritonGPU/IR/Dialect.h"
|
#include "triton/Dialect/TritonGPU/IR/Dialect.h"
|
||||||
#include "llvm/ADT/DenseMap.h"
|
#include "llvm/ADT/DenseMap.h"
|
||||||
#include "llvm/ADT/DenseSet.h"
|
#include "llvm/ADT/DenseSet.h"
|
||||||
@@ -10,191 +11,255 @@
|
|||||||
|
|
||||||
namespace mlir {
|
namespace mlir {
|
||||||
|
|
||||||
void AllocationAnalysis::run() {
|
//===----------------------------------------------------------------------===//
|
||||||
ValueRangeMapT valueRange;
|
// Shared Memory Allocation Analysis
|
||||||
resolveLiveness(valueRange);
|
//===----------------------------------------------------------------------===//
|
||||||
computeOffsets(valueRange);
|
namespace triton {
|
||||||
}
|
class AllocationAnalysis {
|
||||||
|
public:
|
||||||
|
AllocationAnalysis(Operation *operation, Allocation *allocation)
|
||||||
|
: operation(operation), allocation(allocation) {
|
||||||
|
run();
|
||||||
|
}
|
||||||
|
|
||||||
void AllocationAnalysis::resolveLiveness(
|
private:
|
||||||
AllocationAnalysis::ValueRangeMapT &valueRange) {
|
using BufferT = Allocation::BufferT;
|
||||||
Liveness liveness(operation);
|
|
||||||
DenseMap<Operation *, size_t> operationIds;
|
|
||||||
operation->walk<WalkOrder::PreOrder>([&](Operation *op) {
|
|
||||||
operationIds.insert({op, operationIds.size()});
|
|
||||||
});
|
|
||||||
|
|
||||||
operation->walk<WalkOrder::PreOrder>([&](Operation *op) {
|
/// Value -> Liveness Range
|
||||||
|
/// Use MapVector to ensure determinism.
|
||||||
|
using BufferRangeMapT = llvm::MapVector<BufferT *, Range<size_t>>;
|
||||||
|
/// Nodes -> Nodes
|
||||||
|
using GraphT = DenseMap<BufferT *, DenseSet<BufferT *>>;
|
||||||
|
|
||||||
|
void run() {
|
||||||
|
getValuesAndSizes();
|
||||||
|
resolveLiveness();
|
||||||
|
computeOffsets();
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Initializes explicitly defined shared memory values for a given operation.
|
||||||
|
void getExplicitValueSize(Operation *op) {
|
||||||
for (Value result : op->getResults()) {
|
for (Value result : op->getResults()) {
|
||||||
auto liveOperations = liveness.resolveLiveness(result);
|
auto type = result.getType();
|
||||||
auto minId = std::numeric_limits<size_t>::max();
|
if (auto tensorType = type.dyn_cast<RankedTensorType>()) {
|
||||||
auto maxId = std::numeric_limits<size_t>::min();
|
auto encoding = tensorType.getEncoding();
|
||||||
std::for_each(liveOperations.begin(), liveOperations.end(),
|
if (encoding &&
|
||||||
[&](Operation *liveOp) {
|
encoding.isa<triton::gpu::TritonGPUSharedEncodingAttr>()) {
|
||||||
if (operationIds[liveOp] < minId) {
|
// Bytes could be a different value once we support padding or other
|
||||||
minId = operationIds[liveOp];
|
// allocation policies.
|
||||||
}
|
auto bytes = tensorType.getNumElements() *
|
||||||
if (operationIds[liveOp] > maxId) {
|
tensorType.getElementTypeBitWidth() / 8;
|
||||||
maxId = operationIds[liveOp];
|
allocation->addBuffer<BufferT::BufferKind::Explicit>(result, bytes);
|
||||||
}
|
}
|
||||||
});
|
}
|
||||||
valueRange.insert({result, Range(minId, maxId + 1)});
|
|
||||||
}
|
}
|
||||||
});
|
}
|
||||||
}
|
|
||||||
|
|
||||||
void AllocationAnalysis::getSharedMemoryValuesAndSizes(
|
/// Initializes temporary shared memory for a given operation.
|
||||||
const AllocationAnalysis::ValueRangeMapT &valueRange,
|
void getScratchValueSize(Operation *op) {
|
||||||
SmallVector<Value> &sharedMemoryValues) {
|
// TODO(Keren): Add atomic ops
|
||||||
for (auto &valueRange : valueRange) {
|
// TODO(Keren): Add convert ops
|
||||||
auto value = valueRange.first;
|
if (auto reduceOp = dyn_cast<triton::ReduceOp>(op)) {
|
||||||
auto type = value.getType();
|
// TODO(Keren): Reduce with index is not supported yet.
|
||||||
if (auto tensorType = type.dyn_cast<RankedTensorType>()) {
|
auto value = op->getOperand(0);
|
||||||
auto encoding = tensorType.getEncoding();
|
if (auto tensorType = value.getType().dyn_cast<RankedTensorType>()) {
|
||||||
if (encoding &&
|
|
||||||
encoding.isa<triton::gpu::TritonGPUSharedEncodingAttr>()) {
|
|
||||||
// Bytes could be a different value once we support padding or other
|
|
||||||
// allocation policies.
|
|
||||||
auto bytes = tensorType.getNumElements() *
|
auto bytes = tensorType.getNumElements() *
|
||||||
tensorType.getElementTypeBitWidth() / 8;
|
tensorType.getElementTypeBitWidth() / 8;
|
||||||
sharedMemoryValues.emplace_back(value);
|
allocation->addBuffer<BufferT::BufferKind::Scratch>(op, bytes);
|
||||||
valueSize.insert({value, bytes});
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
|
||||||
|
|
||||||
void AllocationAnalysis::calculateSharedMemoryStarts(
|
/// Extract all shared memory values and their sizes
|
||||||
const AllocationAnalysis::ValueRangeMapT &valueRange,
|
void getValuesAndSizes() {
|
||||||
const SmallVector<Value> &sharedMemoryValues,
|
operation->walk<WalkOrder::PreOrder>([&](Operation *op) {
|
||||||
ValueSizeMapT &sharedMemoryStart) {
|
getExplicitValueSize(op);
|
||||||
// v = values in shared memory
|
getScratchValueSize(op);
|
||||||
// t = triplet of (size, start, end)
|
|
||||||
// shared memory space
|
|
||||||
// -
|
|
||||||
// | *******t4
|
|
||||||
// | /|\ v2 inserts t4, t5, and t6
|
|
||||||
// | |
|
|
||||||
// | ******t5 ************t6
|
|
||||||
// | ^^^^^v2^^^^^^
|
|
||||||
// | | *********************t2
|
|
||||||
// | \|/ v2 erases t1
|
|
||||||
// | ******t1 ^^^^^^^^^v1^^^^^^^^^ ************t3
|
|
||||||
// |---------------------------------------------| liveness range
|
|
||||||
// 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ...
|
|
||||||
TripleMapT tripleMap;
|
|
||||||
tripleMap.insert(std::make_pair(0, Range<size_t>()));
|
|
||||||
SmallVector<Value> values = sharedMemoryValues;
|
|
||||||
while (!values.empty()) {
|
|
||||||
auto tripleIt = tripleMap.begin();
|
|
||||||
auto size = tripleIt->first;
|
|
||||||
auto range = tripleIt->second;
|
|
||||||
tripleMap.erase(tripleIt);
|
|
||||||
auto valueIt = std::find_if(values.begin(), values.end(), [&](Value value) {
|
|
||||||
auto xRange = valueRange.lookup(value);
|
|
||||||
bool res = xRange.intersects(range);
|
|
||||||
for (auto val : tripleMap)
|
|
||||||
res = res && !val.second.intersects(xRange);
|
|
||||||
return res;
|
|
||||||
});
|
});
|
||||||
if (valueIt != values.end()) {
|
|
||||||
auto value = *valueIt;
|
|
||||||
auto xSize = valueSize.lookup(value);
|
|
||||||
auto xRange = valueRange.lookup(value);
|
|
||||||
sharedMemoryStart[value] = size;
|
|
||||||
tripleMap.insert(
|
|
||||||
{size + xSize, Range{std::max(range.start(), xRange.start()),
|
|
||||||
std::min(range.end(), xRange.end())}});
|
|
||||||
if (range.start() < xRange.start())
|
|
||||||
tripleMap.insert({size, Range{range.start(), xRange.end()}});
|
|
||||||
if (xRange.end() < range.end())
|
|
||||||
tripleMap.insert({size, Range{xRange.start(), range.end()}});
|
|
||||||
values.erase(valueIt);
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
|
||||||
|
|
||||||
void AllocationAnalysis::buildInterferenceGraph(
|
/// Resolves liveness of all values involved under the root operation.
|
||||||
const AllocationAnalysis::ValueRangeMapT &valueRange,
|
void resolveLiveness() {
|
||||||
const SmallVector<Value> &sharedMemoryValues,
|
// In the SCF dialect, we always have a sequentially nested structure of
|
||||||
const ValueSizeMapT &sharedMemoryStart, GraphT &interference) {
|
// blocks
|
||||||
for (auto x : sharedMemoryValues) {
|
DenseMap<Operation *, size_t> operationId;
|
||||||
for (auto y : sharedMemoryValues) {
|
operation->walk<WalkOrder::PreOrder>(
|
||||||
if (x == y)
|
[&](Operation *op) { operationId[op] = operationId.size(); });
|
||||||
continue;
|
|
||||||
auto xStart = sharedMemoryStart.lookup(x);
|
Liveness liveness(operation);
|
||||||
auto yStart = sharedMemoryStart.lookup(y);
|
operation->walk<WalkOrder::PreOrder>([&](Operation *op) {
|
||||||
auto xSize = valueSize.lookup(x);
|
for (Value result : op->getResults()) {
|
||||||
auto ySize = valueSize.lookup(y);
|
auto liveOperations = liveness.resolveLiveness(result);
|
||||||
Range xSizeRange = {xStart, xStart + xSize};
|
auto minId = std::numeric_limits<size_t>::max();
|
||||||
Range ySizeRange = {yStart, yStart + ySize};
|
auto maxId = std::numeric_limits<size_t>::min();
|
||||||
auto xOpRange = valueRange.lookup(x);
|
std::for_each(liveOperations.begin(), liveOperations.end(),
|
||||||
auto yOpRange = valueRange.lookup(y);
|
[&](Operation *liveOp) {
|
||||||
if (xOpRange.intersects(yOpRange) && xSizeRange.intersects(ySizeRange)) {
|
if (operationId[liveOp] < minId) {
|
||||||
interference[x].insert(y);
|
minId = operationId[liveOp];
|
||||||
|
}
|
||||||
|
if (operationId[liveOp] > maxId) {
|
||||||
|
maxId = operationId[liveOp];
|
||||||
|
}
|
||||||
|
});
|
||||||
|
if (allocation->valueBuffer.count(result)) {
|
||||||
|
auto *buffer = allocation->valueBuffer[result];
|
||||||
|
bufferRange.insert({buffer, Range(minId, maxId + 1)});
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (allocation->opScratch.count(op)) {
|
||||||
|
// Any scratch memory's live range is the current operation's live
|
||||||
|
// range.
|
||||||
|
auto *buffer = allocation->opScratch[op];
|
||||||
|
bufferRange.insert(
|
||||||
|
{buffer, Range(operationId[op], operationId[op] + 1)});
|
||||||
|
}
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Computes the shared memory offsets for all related values.
|
||||||
|
/// Paper: Algorithms for Compile-Time Memory Optimization
|
||||||
|
/// (https://www.cs.utexas.edu/users/harrison/papers/compile-time.pdf)
|
||||||
|
void computeOffsets() {
|
||||||
|
SmallVector<BufferT *> buffers;
|
||||||
|
for (auto bufferIter : bufferRange) {
|
||||||
|
buffers.emplace_back(bufferIter.first);
|
||||||
|
}
|
||||||
|
|
||||||
|
DenseMap<BufferT *, size_t> bufferStart;
|
||||||
|
calculateStarts(buffers, bufferStart);
|
||||||
|
|
||||||
|
GraphT interference;
|
||||||
|
buildInterferenceGraph(buffers, bufferStart, interference);
|
||||||
|
|
||||||
|
allocate(buffers, bufferStart, interference);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Computes the initial shared memory offsets.
|
||||||
|
void calculateStarts(const SmallVector<BufferT *> &buffers,
|
||||||
|
DenseMap<BufferT *, size_t> &bufferStart) {
|
||||||
|
// v = values in shared memory
|
||||||
|
// t = triplet of (size, start, end)
|
||||||
|
// shared memory space
|
||||||
|
// -
|
||||||
|
// | *******t4
|
||||||
|
// | /|\ v2 inserts t4, t5, and t6
|
||||||
|
// | |
|
||||||
|
// | ******t5 ************t6
|
||||||
|
// | ^^^^^v2^^^^^^
|
||||||
|
// | | *********************t2
|
||||||
|
// | \|/ v2 erases t1
|
||||||
|
// | ******t1 ^^^^^^^^^v1^^^^^^^^^ ************t3
|
||||||
|
// |---------------------------------------------| liveness range
|
||||||
|
// 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ...
|
||||||
|
/// Start -> Liveness Range
|
||||||
|
using TripleMapT = std::multimap<size_t, Range<size_t>>;
|
||||||
|
TripleMapT tripleMap;
|
||||||
|
tripleMap.insert(std::make_pair(0, Range<size_t>()));
|
||||||
|
SmallVector<BufferT *> xBuffers = buffers;
|
||||||
|
while (!xBuffers.empty()) {
|
||||||
|
auto tripleIt = tripleMap.begin();
|
||||||
|
auto size = tripleIt->first;
|
||||||
|
auto range = tripleIt->second;
|
||||||
|
tripleMap.erase(tripleIt);
|
||||||
|
auto bufferIt =
|
||||||
|
std::find_if(xBuffers.begin(), xBuffers.end(), [&](auto *buffer) {
|
||||||
|
auto xRange = bufferRange[buffer];
|
||||||
|
bool res = xRange.intersects(range);
|
||||||
|
for (auto val : tripleMap)
|
||||||
|
res = res && !val.second.intersects(xRange);
|
||||||
|
return res;
|
||||||
|
});
|
||||||
|
if (bufferIt != xBuffers.end()) {
|
||||||
|
auto buffer = *bufferIt;
|
||||||
|
auto xSize = buffer->size;
|
||||||
|
auto xRange = bufferRange.lookup(buffer);
|
||||||
|
bufferStart[buffer] = size;
|
||||||
|
tripleMap.insert(
|
||||||
|
{size + xSize, Range{std::max(range.start(), xRange.start()),
|
||||||
|
std::min(range.end(), xRange.end())}});
|
||||||
|
if (range.start() < xRange.start())
|
||||||
|
tripleMap.insert({size, Range{range.start(), xRange.end()}});
|
||||||
|
if (xRange.end() < range.end())
|
||||||
|
tripleMap.insert({size, Range{xRange.start(), range.end()}});
|
||||||
|
xBuffers.erase(bufferIt);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
|
||||||
|
|
||||||
void AllocationAnalysis::allocateSharedMemory(
|
/// Builds a graph of all shared memory values. Edges are created between
|
||||||
const AllocationAnalysis::ValueRangeMapT &valueRangeMap,
|
/// shared memory values that are overlapping.
|
||||||
const SmallVector<Value> &sharedMemoryValues,
|
void buildInterferenceGraph(const SmallVector<BufferT *> &buffers,
|
||||||
const AllocationAnalysis::ValueSizeMapT &sharedMemoryStart,
|
const DenseMap<BufferT *, size_t> &bufferStart,
|
||||||
const AllocationAnalysis::GraphT &interference) {
|
GraphT &interference) {
|
||||||
// First-fit graph coloring
|
for (auto x : buffers) {
|
||||||
// Neighbors are nodes that interfere with each other.
|
for (auto y : buffers) {
|
||||||
// We color a node by finding the index of the first available non-neighboring
|
if (x == y)
|
||||||
// node or the first neighboring node without any color.
|
continue;
|
||||||
// Nodes with the same color do not interfere with each other.
|
auto xStart = bufferStart.lookup(x);
|
||||||
DenseMap<Value, int> colors;
|
auto yStart = bufferStart.lookup(y);
|
||||||
for (auto value : sharedMemoryValues) {
|
auto xSize = x->size;
|
||||||
colors[value] = (value == sharedMemoryValues[0]) ? 0 : -1;
|
auto ySize = y->size;
|
||||||
}
|
Range xSizeRange = {xStart, xStart + xSize};
|
||||||
SmallVector<bool> available(sharedMemoryValues.size());
|
Range ySizeRange = {yStart, yStart + ySize};
|
||||||
for (auto x : sharedMemoryValues) {
|
auto xOpRange = bufferRange.lookup(x);
|
||||||
std::fill(available.begin(), available.end(), true);
|
auto yOpRange = bufferRange.lookup(y);
|
||||||
for (auto y : interference.lookup(x)) {
|
if (xOpRange.intersects(yOpRange) &&
|
||||||
int color = colors[y];
|
xSizeRange.intersects(ySizeRange)) {
|
||||||
if (color >= 0) {
|
interference[x].insert(y);
|
||||||
available[color] = false;
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
auto it = std::find(available.begin(), available.end(), true);
|
|
||||||
colors[x] = std::distance(available.begin(), it);
|
|
||||||
}
|
}
|
||||||
// Finalize allocation
|
|
||||||
// color0: [0, 7), [0, 8), [0, 15) -> [0, 7), [0, 8), [0, 15)
|
/// Finalizes shared memory offsets considering interference.
|
||||||
// color1: [7, 9) -> [0 + 1 * 15, 9 + 1 * 15) -> [15, 24)
|
void allocate(const SmallVector<BufferT *> &buffers,
|
||||||
// color2: [8, 12) -> [8 + 2 * 15, 12 + 2 * 15) -> [38, 42)
|
const DenseMap<BufferT *, size_t> &bufferStart,
|
||||||
// TODO(Keren): We are wasting memory here.
|
const GraphT &interference) {
|
||||||
// Nodes with color2 can actually start with 24.
|
// First-fit graph coloring
|
||||||
for (auto x : sharedMemoryValues) {
|
// Neighbors are nodes that interfere with each other.
|
||||||
size_t adj = 0;
|
// We color a node by finding the index of the first available
|
||||||
for (auto y : interference.lookup(x)) {
|
// non-neighboring node or the first neighboring node without any color.
|
||||||
adj = std::max(adj, sharedMemoryStart.lookup(y) + valueSize.lookup(y));
|
// Nodes with the same color do not interfere with each other.
|
||||||
|
DenseMap<BufferT *, int> colors;
|
||||||
|
for (auto value : buffers) {
|
||||||
|
colors[value] = (value == buffers[0]) ? 0 : -1;
|
||||||
|
}
|
||||||
|
SmallVector<bool> available(buffers.size());
|
||||||
|
for (auto x : buffers) {
|
||||||
|
std::fill(available.begin(), available.end(), true);
|
||||||
|
for (auto y : interference.lookup(x)) {
|
||||||
|
int color = colors[y];
|
||||||
|
if (color >= 0) {
|
||||||
|
available[color] = false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
auto it = std::find(available.begin(), available.end(), true);
|
||||||
|
colors[x] = std::distance(available.begin(), it);
|
||||||
|
}
|
||||||
|
// Finalize allocation
|
||||||
|
// color0: [0, 7), [0, 8), [0, 15) -> [0, 7), [0, 8), [0, 15)
|
||||||
|
// color1: [7, 9) -> [0 + 1 * 15, 9 + 1 * 15) -> [15, 24)
|
||||||
|
// color2: [8, 12) -> [8 + 2 * 15, 12 + 2 * 15) -> [38, 42)
|
||||||
|
// TODO(Keren): We are wasting memory here.
|
||||||
|
// Nodes with color2 can actually start with 24.
|
||||||
|
for (auto x : buffers) {
|
||||||
|
size_t adj = 0;
|
||||||
|
for (auto y : interference.lookup(x)) {
|
||||||
|
adj = std::max(adj, bufferStart.lookup(y) + y->size);
|
||||||
|
}
|
||||||
|
x->offset = bufferStart.lookup(x) + colors.lookup(x) * adj;
|
||||||
|
allocation->sharedMemorySize =
|
||||||
|
std::max(allocation->sharedMemorySize, x->offset + x->size);
|
||||||
}
|
}
|
||||||
valueOffset[x] = sharedMemoryStart.lookup(x) + colors.lookup(x) * adj;
|
|
||||||
sharedMemorySize =
|
|
||||||
std::max(sharedMemorySize, valueOffset[x] + valueSize.lookup(x));
|
|
||||||
}
|
}
|
||||||
}
|
|
||||||
|
|
||||||
void AllocationAnalysis::computeOffsets(
|
private:
|
||||||
const AllocationAnalysis::ValueRangeMapT &valueRange) {
|
Operation *operation;
|
||||||
SmallVector<Value> sharedMemoryValues;
|
Allocation *allocation;
|
||||||
getSharedMemoryValuesAndSizes(valueRange, sharedMemoryValues);
|
BufferRangeMapT bufferRange;
|
||||||
|
};
|
||||||
|
} // namespace triton
|
||||||
|
|
||||||
ValueSizeMapT sharedMemoryStart;
|
void Allocation::run() { triton::AllocationAnalysis(getOperation(), this); }
|
||||||
calculateSharedMemoryStarts(valueRange, sharedMemoryValues,
|
|
||||||
sharedMemoryStart);
|
|
||||||
|
|
||||||
GraphT interference;
|
|
||||||
buildInterferenceGraph(valueRange, sharedMemoryValues, sharedMemoryStart,
|
|
||||||
interference);
|
|
||||||
|
|
||||||
allocateSharedMemory(valueRange, sharedMemoryValues, sharedMemoryStart,
|
|
||||||
interference);
|
|
||||||
}
|
|
||||||
|
|
||||||
} // namespace mlir
|
} // namespace mlir
|
||||||
|
@@ -1,6 +1,7 @@
|
|||||||
add_mlir_library(TritonAnalysis
|
add_mlir_library(TritonAnalysis
|
||||||
AxisInfo.cpp
|
AxisInfo.cpp
|
||||||
Allocation.cpp
|
Allocation.cpp
|
||||||
|
Membar.cpp
|
||||||
|
|
||||||
DEPENDS
|
DEPENDS
|
||||||
TritonGPUAttrDefsIncGen
|
TritonGPUAttrDefsIncGen
|
||||||
|
95
lib/Analysis/Membar.cpp
Normal file
95
lib/Analysis/Membar.cpp
Normal file
@@ -0,0 +1,95 @@
|
|||||||
|
#include "triton/Analysis/Membar.h"
|
||||||
|
#include "triton/Dialect/TritonGPU/IR/Dialect.h"
|
||||||
|
|
||||||
|
#include "mlir/Dialect/GPU/GPUDialect.h"
|
||||||
|
|
||||||
|
namespace mlir {
|
||||||
|
|
||||||
|
void MembarAnalysis::run() {
|
||||||
|
auto *operation = allocation->getOperation();
|
||||||
|
operation->getContext()->getOrLoadDialect<mlir::gpu::GPUDialect>();
|
||||||
|
RegionInfo regionInfo;
|
||||||
|
OpBuilder builder(operation);
|
||||||
|
dfsOperation(operation, ®ionInfo, &builder);
|
||||||
|
}
|
||||||
|
|
||||||
|
void MembarAnalysis::dfsOperation(Operation *operation,
|
||||||
|
RegionInfo *parentRegionInfo,
|
||||||
|
OpBuilder *builder) {
|
||||||
|
transfer(operation, parentRegionInfo, builder);
|
||||||
|
if (operation->getNumRegions()) {
|
||||||
|
// If there's any nested regions, we need to visit them.
|
||||||
|
// scf.if and scf.else: two regions
|
||||||
|
// scf.if only: two regions
|
||||||
|
// scf.for: one region
|
||||||
|
RegionInfo curRegionInfo;
|
||||||
|
for (auto ®ion : operation->getRegions()) {
|
||||||
|
// Copy the parent info as the current info.
|
||||||
|
RegionInfo regionInfo = *parentRegionInfo;
|
||||||
|
for (auto &block : region.getBlocks()) {
|
||||||
|
assert(region.getBlocks().size() == 1 &&
|
||||||
|
"Multiple blocks in a region is not supported");
|
||||||
|
for (auto &op : block.getOperations()) {
|
||||||
|
// Traverse the nested operation.
|
||||||
|
dfsOperation(&op, ®ionInfo, builder);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
curRegionInfo.join(regionInfo);
|
||||||
|
}
|
||||||
|
// Set the parent region info as the union of the nested region info.
|
||||||
|
*parentRegionInfo = curRegionInfo;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void MembarAnalysis::transfer(Operation *op, RegionInfo *regionInfo,
|
||||||
|
OpBuilder *builder) {
|
||||||
|
if (op->getNumResults() < 1)
|
||||||
|
return;
|
||||||
|
|
||||||
|
if (dyn_cast<gpu::BarrierOp>(op)) {
|
||||||
|
// If the current op is a barrier, we sync previous reads and writes
|
||||||
|
regionInfo->sync();
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (dyn_cast<triton::gpu::AsyncWaitOp>(op)) {
|
||||||
|
// If the current op is an async wait, we insert a barrier op and sync
|
||||||
|
// previous reads and writes.
|
||||||
|
OpBuilder::InsertionGuard g(*builder);
|
||||||
|
builder->setInsertionPointAfter(op);
|
||||||
|
builder->create<gpu::BarrierOp>(op->getLoc());
|
||||||
|
regionInfo->sync();
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
auto addBuffer = [&](RegionInfo::BufferIdSetT &bufferSet,
|
||||||
|
Allocation::BufferId bufferId) {
|
||||||
|
if (bufferId != Allocation::InvalidBufferId) {
|
||||||
|
bufferSet.insert(bufferId);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
RegionInfo curRegionInfo;
|
||||||
|
for (Value value : op->getOperands()) {
|
||||||
|
// ConvertLayoutOp: shared memory -> registers
|
||||||
|
addBuffer(curRegionInfo.syncReadBuffers, allocation->getBufferId(value));
|
||||||
|
}
|
||||||
|
for (Value value : op->getResults()) {
|
||||||
|
// ConvertLayoutOp: registers -> shared memory
|
||||||
|
addBuffer(curRegionInfo.syncWriteBuffers, allocation->getBufferId(value));
|
||||||
|
}
|
||||||
|
// Scratch buffer is considered as a shared memory read
|
||||||
|
addBuffer(curRegionInfo.syncReadBuffers, allocation->getBufferId(op));
|
||||||
|
|
||||||
|
if (regionInfo->isIntersected(curRegionInfo, allocation)) {
|
||||||
|
OpBuilder::InsertionGuard g(*builder);
|
||||||
|
builder->setInsertionPoint(op);
|
||||||
|
builder->create<gpu::BarrierOp>(op->getLoc());
|
||||||
|
regionInfo->sync();
|
||||||
|
}
|
||||||
|
// Update the region info, even if barrier is inserted, we have to maintain
|
||||||
|
// the current op's read/write buffers.
|
||||||
|
regionInfo->join(curRegionInfo);
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace mlir
|
@@ -1,4 +1,4 @@
|
|||||||
// RUN: triton-opt %s --mlir-disable-threading -test-print-allocation 2>&1 | FileCheck %s
|
// RUN: triton-opt %s -split-input-file --mlir-disable-threading -test-print-allocation 2>&1 | FileCheck %s
|
||||||
|
|
||||||
#AL = #triton_gpu.blocked<{sizePerThread = [1, 4], threadsPerWarp = [4, 8], warpsPerCTA = [4, 1], order = [1, 0]}>
|
#AL = #triton_gpu.blocked<{sizePerThread = [1, 4], threadsPerWarp = [4, 8], warpsPerCTA = [4, 1], order = [1, 0]}>
|
||||||
#BL = #triton_gpu.blocked<{sizePerThread = [1, 4], threadsPerWarp = [1, 32], warpsPerCTA = [4, 1], order = [1, 0]}>
|
#BL = #triton_gpu.blocked<{sizePerThread = [1, 4], threadsPerWarp = [1, 32], warpsPerCTA = [4, 1], order = [1, 0]}>
|
||||||
@@ -6,6 +6,7 @@
|
|||||||
#B = #triton_gpu.shared<{vec = 2, perPhase = 2, maxPhase = 4, order = [1, 0]}>
|
#B = #triton_gpu.shared<{vec = 2, perPhase = 2, maxPhase = 4, order = [1, 0]}>
|
||||||
#C = #triton_gpu.mma<{version = 2, warpsPerCTA = [4, 1]}>
|
#C = #triton_gpu.mma<{version = 2, warpsPerCTA = [4, 1]}>
|
||||||
|
|
||||||
|
// CHECK-LABEL: matmul_loop
|
||||||
func @matmul_loop(%lb : index, %ub : index, %step : index, %A : !tt.ptr<f16>, %B : !tt.ptr<f16>) {
|
func @matmul_loop(%lb : index, %ub : index, %step : index, %A : !tt.ptr<f16>, %B : !tt.ptr<f16>) {
|
||||||
%a_ptr_init = tt.broadcast %A : (!tt.ptr<f16>) -> tensor<128x32x!tt.ptr<f16>, #AL>
|
%a_ptr_init = tt.broadcast %A : (!tt.ptr<f16>) -> tensor<128x32x!tt.ptr<f16>, #AL>
|
||||||
%b_ptr_init = tt.broadcast %B : (!tt.ptr<f16>) -> tensor<32x128x!tt.ptr<f16>, #BL>
|
%b_ptr_init = tt.broadcast %B : (!tt.ptr<f16>) -> tensor<32x128x!tt.ptr<f16>, #BL>
|
||||||
@@ -24,7 +25,7 @@ func @matmul_loop(%lb : index, %ub : index, %step : index, %A : !tt.ptr<f16>, %B
|
|||||||
// CHECK: offset = 0, size = 8192
|
// CHECK: offset = 0, size = 8192
|
||||||
%a = triton_gpu.convert_layout %a_ : (tensor<128x32xf16, #AL>) -> tensor<128x32xf16, #A>
|
%a = triton_gpu.convert_layout %a_ : (tensor<128x32xf16, #AL>) -> tensor<128x32xf16, #A>
|
||||||
%b_ = tt.load %b_ptr, %b_mask, %b_other {cache = 1 : i32, evict = 1 : i32, isOtherUnspecified = false, isVolatile = false} : tensor<32x128xf16, #BL>
|
%b_ = tt.load %b_ptr, %b_mask, %b_other {cache = 1 : i32, evict = 1 : i32, isOtherUnspecified = false, isVolatile = false} : tensor<32x128xf16, #BL>
|
||||||
// CHECK: offset = 8192, size = 8192
|
// CHECK-NEXT: offset = 8192, size = 8192
|
||||||
%b = triton_gpu.convert_layout %b_ : (tensor<32x128xf16, #BL>) -> tensor<32x128xf16, #B>
|
%b = triton_gpu.convert_layout %b_ : (tensor<32x128xf16, #BL>) -> tensor<32x128xf16, #B>
|
||||||
|
|
||||||
%c = tt.dot %a, %b, %prev_c {allowTF32 = true} : tensor<128x32xf16, #A> * tensor<32x128xf16, #B> -> tensor<128x128xf32, #C>
|
%c = tt.dot %a, %b, %prev_c {allowTF32 = true} : tensor<128x32xf16, #A> * tensor<32x128xf16, #B> -> tensor<128x128xf32, #C>
|
||||||
@@ -34,11 +35,12 @@ func @matmul_loop(%lb : index, %ub : index, %step : index, %A : !tt.ptr<f16>, %B
|
|||||||
scf.yield %next_a_ptr, %next_b_ptr, %c : tensor<128x32x!tt.ptr<f16>, #AL>, tensor<32x128x!tt.ptr<f16>, #BL>, tensor<128x128xf32, #C>
|
scf.yield %next_a_ptr, %next_b_ptr, %c : tensor<128x32x!tt.ptr<f16>, #AL>, tensor<32x128x!tt.ptr<f16>, #BL>, tensor<128x128xf32, #C>
|
||||||
}
|
}
|
||||||
return
|
return
|
||||||
// CHECK: size = 16384
|
// CHECK-NEXT: size = 16384
|
||||||
}
|
}
|
||||||
|
|
||||||
// Shared memory is available after a tensor's liveness range ends
|
// Shared memory is available after a tensor's liveness range ends
|
||||||
func @synthesized_reusable(%A : !tt.ptr<f16>) {
|
// CHECK-LABEL: reusable
|
||||||
|
func @reusable(%A : !tt.ptr<f16>) {
|
||||||
%cst1 = arith.constant dense<true> : tensor<128x32xi1, #AL>
|
%cst1 = arith.constant dense<true> : tensor<128x32xi1, #AL>
|
||||||
%cst2 = arith.constant dense<0.000000e+00> : tensor<128x32xf16, #AL>
|
%cst2 = arith.constant dense<0.000000e+00> : tensor<128x32xf16, #AL>
|
||||||
%cst3 = arith.constant dense<true> : tensor<32x128xi1, #AL>
|
%cst3 = arith.constant dense<true> : tensor<32x128xi1, #AL>
|
||||||
@@ -51,95 +53,162 @@ func @synthesized_reusable(%A : !tt.ptr<f16>) {
|
|||||||
// CHECK: offset = 0, size = 8192
|
// CHECK: offset = 0, size = 8192
|
||||||
%a1 = triton_gpu.convert_layout %a1_ : (tensor<128x32xf16, #AL>) -> tensor<128x32xf16, #A>
|
%a1 = triton_gpu.convert_layout %a1_ : (tensor<128x32xf16, #AL>) -> tensor<128x32xf16, #A>
|
||||||
%a2_ = tt.load %b_ptr, %cst3, %cst4 {cache = 1 : i32, evict = 1 : i32, isOtherUnspecified = false, isVolatile = false} : tensor<32x128xf16, #AL>
|
%a2_ = tt.load %b_ptr, %cst3, %cst4 {cache = 1 : i32, evict = 1 : i32, isOtherUnspecified = false, isVolatile = false} : tensor<32x128xf16, #AL>
|
||||||
// CHECK: offset = 8192, size = 8192
|
// CHECK-NEXT: offset = 8192, size = 8192
|
||||||
%a2 = triton_gpu.convert_layout %a2_ : (tensor<32x128xf16, #AL>) -> tensor<32x128xf16, #A>
|
%a2 = triton_gpu.convert_layout %a2_ : (tensor<32x128xf16, #AL>) -> tensor<32x128xf16, #A>
|
||||||
%a3_ = tt.load %a_ptr, %cst1, %cst2 {cache = 1 : i32, evict = 1 : i32, isOtherUnspecified = false, isVolatile = false} : tensor<128x32xf16, #AL>
|
%a3_ = tt.load %a_ptr, %cst1, %cst2 {cache = 1 : i32, evict = 1 : i32, isOtherUnspecified = false, isVolatile = false} : tensor<128x32xf16, #AL>
|
||||||
// CHECK: offset = 16384, size = 8192
|
// CHECK-NEXT: offset = 16384, size = 8192
|
||||||
%a3 = triton_gpu.convert_layout %a3_ : (tensor<128x32xf16, #AL>) -> tensor<128x32xf16, #A>
|
%a3 = triton_gpu.convert_layout %a3_ : (tensor<128x32xf16, #AL>) -> tensor<128x32xf16, #A>
|
||||||
%c = tt.dot %a1, %a2, %c_init {allowTF32 = true} : tensor<128x32xf16, #A> * tensor<32x128xf16, #B> -> tensor<128x128xf32, #C>
|
%c = tt.dot %a1, %a2, %c_init {allowTF32 = true} : tensor<128x32xf16, #A> * tensor<32x128xf16, #B> -> tensor<128x128xf32, #C>
|
||||||
%a4_ = tt.load %b_ptr, %cst3, %cst4 {cache = 1 : i32, evict = 1 : i32, isOtherUnspecified = false, isVolatile = false} : tensor<32x128xf16, #AL>
|
%a4_ = tt.load %b_ptr, %cst3, %cst4 {cache = 1 : i32, evict = 1 : i32, isOtherUnspecified = false, isVolatile = false} : tensor<32x128xf16, #AL>
|
||||||
// CHECK: offset = 0, size = 8192
|
// CHECK-NEXT: offset = 0, size = 8192
|
||||||
%a4 = triton_gpu.convert_layout %a4_ : (tensor<32x128xf16, #AL>) -> tensor<32x128xf16, #A>
|
%a4 = triton_gpu.convert_layout %a4_ : (tensor<32x128xf16, #AL>) -> tensor<32x128xf16, #A>
|
||||||
%c1 = tt.dot %a3, %a4, %c {allowTF32 = true} : tensor<128x32xf16, #A> * tensor<32x128xf16, #B> -> tensor<128x128xf32, #C>
|
%c1 = tt.dot %a3, %a4, %c {allowTF32 = true} : tensor<128x32xf16, #A> * tensor<32x128xf16, #B> -> tensor<128x128xf32, #C>
|
||||||
return
|
return
|
||||||
// CHECK: size = 24576
|
// CHECK-NEXT: size = 24576
|
||||||
}
|
}
|
||||||
|
|
||||||
// A tensor's shared memory offset is larger than it needs to accommodate further tensors
|
// A tensor's shared memory offset is larger than it needs to accommodate further tensors
|
||||||
// %cst0->%c
|
// %cst0->%c
|
||||||
// %cst1->%cst4
|
// %cst1->%cst4
|
||||||
// %cst3->%g->%h->%i
|
// %cst3->%g->%h->%i
|
||||||
func @synthesize_preallocate(%A : !tt.ptr<f16>) {
|
// CHECK-LABEL: preallocate
|
||||||
|
func @preallocate(%A : !tt.ptr<f16>) {
|
||||||
// CHECK: offset = 0, size = 512
|
// CHECK: offset = 0, size = 512
|
||||||
%cst0 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
|
%cst0 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
|
||||||
// CHECK: offset = 1024, size = 512
|
// CHECK-NEXT: offset = 1024, size = 512
|
||||||
%cst1 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
|
%cst1 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
|
||||||
// CHECK: offset = 1536, size = 512
|
// CHECK-NEXT: offset = 1536, size = 512
|
||||||
%cst2 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
|
%cst2 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
|
||||||
// CHECK: offset = 2048, size = 1024
|
// CHECK-NEXT: offset = 2048, size = 1024
|
||||||
%a = tt.cat %cst0, %cst1 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A>
|
%a = tt.cat %cst0, %cst1 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A>
|
||||||
// CHECK: offset = 3072, size = 1024
|
// CHECK-NEXT: offset = 3072, size = 1024
|
||||||
%b = tt.cat %cst0, %cst2 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A>
|
%b = tt.cat %cst0, %cst2 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A>
|
||||||
// CHECK: offset = 0, size = 1024
|
// CHECK-NEXT: offset = 0, size = 1024
|
||||||
%c = tt.cat %cst1, %cst2 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A>
|
%c = tt.cat %cst1, %cst2 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A>
|
||||||
// CHECK: offset = 1024, size = 1024
|
// CHECK-NEXT: offset = 1024, size = 1024
|
||||||
%cst4 = arith.constant dense<0.000000e+00> : tensor<32x16xf16, #A>
|
%cst4 = arith.constant dense<0.000000e+00> : tensor<32x16xf16, #A>
|
||||||
// CHECK: offset = 6144, size = 2048
|
// CHECK-NEXT: offset = 6144, size = 2048
|
||||||
%e = tt.cat %a, %cst4 {axis = 0} : (tensor<32x16xf16, #A>, tensor<32x16xf16, #A>) -> tensor<64x16xf16, #A>
|
%e = tt.cat %a, %cst4 {axis = 0} : (tensor<32x16xf16, #A>, tensor<32x16xf16, #A>) -> tensor<64x16xf16, #A>
|
||||||
// CHECK: offset = 8192, size = 2048
|
// CHECK-NEXT: offset = 8192, size = 2048
|
||||||
%d = tt.cat %b, %cst4 {axis = 0} : (tensor<32x16xf16, #A>, tensor<32x16xf16, #A>) -> tensor<64x16xf16, #A>
|
%d = tt.cat %b, %cst4 {axis = 0} : (tensor<32x16xf16, #A>, tensor<32x16xf16, #A>) -> tensor<64x16xf16, #A>
|
||||||
// CHECK: offset = 10240, size = 2048
|
// CHECK-NEXT: offset = 10240, size = 2048
|
||||||
%f = tt.cat %c, %cst4 {axis = 0} : (tensor<32x16xf16, #A>, tensor<32x16xf16, #A>) -> tensor<64x16xf16, #A>
|
%f = tt.cat %c, %cst4 {axis = 0} : (tensor<32x16xf16, #A>, tensor<32x16xf16, #A>) -> tensor<64x16xf16, #A>
|
||||||
// CHECK: offset = 0, size = 2048
|
// CHECK-NEXT: offset = 0, size = 2048
|
||||||
%cst5 = arith.constant dense<0.000000e+00> : tensor<64x16xf16, #A>
|
%cst5 = arith.constant dense<0.000000e+00> : tensor<64x16xf16, #A>
|
||||||
// CHECK: offset = 2048, size = 4096
|
// CHECK-NEXT: offset = 2048, size = 4096
|
||||||
%g = tt.cat %e, %cst5 {axis = 0} : (tensor<64x16xf16, #A>, tensor<64x16xf16, #A>) -> tensor<128x16xf16, #A>
|
%g = tt.cat %e, %cst5 {axis = 0} : (tensor<64x16xf16, #A>, tensor<64x16xf16, #A>) -> tensor<128x16xf16, #A>
|
||||||
// CHECK: offset = 2048, size = 4096
|
// CHECK-NEXT: offset = 2048, size = 4096
|
||||||
%h = tt.cat %d, %cst5 {axis = 0} : (tensor<64x16xf16, #A>, tensor<64x16xf16, #A>) -> tensor<128x16xf16, #A>
|
%h = tt.cat %d, %cst5 {axis = 0} : (tensor<64x16xf16, #A>, tensor<64x16xf16, #A>) -> tensor<128x16xf16, #A>
|
||||||
// CHECK: offset = 2048, size = 4096
|
// CHECK-NEXT: offset = 2048, size = 4096
|
||||||
%i = tt.cat %f, %cst5 {axis = 0} : (tensor<64x16xf16, #A>, tensor<64x16xf16, #A>) -> tensor<128x16xf16, #A>
|
%i = tt.cat %f, %cst5 {axis = 0} : (tensor<64x16xf16, #A>, tensor<64x16xf16, #A>) -> tensor<128x16xf16, #A>
|
||||||
return
|
return
|
||||||
// CHECK: size = 12288
|
// CHECK-NEXT: size = 12288
|
||||||
}
|
}
|
||||||
|
|
||||||
// Unused tensors are immediately released
|
// Unused tensors are immediately released
|
||||||
func @synthesize_unused(%A : !tt.ptr<f16>) {
|
// CHECK-LABEL: unused
|
||||||
|
func @unused(%A : !tt.ptr<f16>) {
|
||||||
// CHECK: offset = 0, size = 1024
|
// CHECK: offset = 0, size = 1024
|
||||||
%cst0 = arith.constant dense<0.000000e+00> : tensor<32x16xf16, #A>
|
%cst0 = arith.constant dense<0.000000e+00> : tensor<32x16xf16, #A>
|
||||||
// CHECK: offset = 0, size = 512
|
// CHECK-NEXT: offset = 0, size = 512
|
||||||
%cst1 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
|
%cst1 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
|
||||||
// CHECK: offset = 512, size = 512
|
// CHECK-NEXT: offset = 512, size = 512
|
||||||
%cst2 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
|
%cst2 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
|
||||||
// CHECK: offset = 1024, size = 1024
|
// CHECK-NEXT: offset = 1024, size = 1024
|
||||||
%a = tt.cat %cst1, %cst2 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A>
|
%a = tt.cat %cst1, %cst2 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A>
|
||||||
return
|
return
|
||||||
// CHECK: size = 2048
|
// CHECK: size = 2048
|
||||||
}
|
}
|
||||||
|
|
||||||
// cst0 is alive through the entire function, it cannot be released before the end of the function
|
// cst0 is alive through the entire function, it cannot be released before the end of the function
|
||||||
func @synthesize_longlive(%A : !tt.ptr<f16>) {
|
// CHECK-LABEL: longlive
|
||||||
|
func @longlive(%A : !tt.ptr<f16>) {
|
||||||
// CHECK: offset = 0, size = 512
|
// CHECK: offset = 0, size = 512
|
||||||
%cst0 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
|
%cst0 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
|
||||||
// CHECK: offset = 512, size = 512
|
// CHECK-NEXT: offset = 512, size = 512
|
||||||
%cst1 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
|
%cst1 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
|
||||||
// CHECK: offset = 1024, size = 512
|
// CHECK-NEXT: offset = 1024, size = 512
|
||||||
%cst2 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
|
%cst2 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
|
||||||
// CHECK: offset = 1536, size = 1024
|
// CHECK-NEXT: offset = 1536, size = 1024
|
||||||
%a = tt.cat %cst1, %cst2 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A>
|
%a = tt.cat %cst1, %cst2 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A>
|
||||||
// CHECK: offset = 512, size = 512
|
// CHECK-NEXT: offset = 512, size = 512
|
||||||
%cst3 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
|
%cst3 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
|
||||||
// CHECK: offset = 1024, size = 512
|
// CHECK-NEXT: offset = 1024, size = 512
|
||||||
%cst4 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
|
%cst4 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
|
||||||
// CHECK: offset = 1536, size = 1024
|
// CHECK-NEXT: offset = 1536, size = 1024
|
||||||
%b = tt.cat %cst3, %cst4 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A>
|
%b = tt.cat %cst3, %cst4 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A>
|
||||||
// CHECK: offset = 1536, size = 512
|
// CHECK-NEXT: offset = 1536, size = 512
|
||||||
%cst5 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
|
%cst5 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
|
||||||
// CHECK: offset = 1536, size = 512
|
// CHECK-NEXT: offset = 1536, size = 512
|
||||||
%cst6 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
|
%cst6 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
|
||||||
// CHECK: offset = 1536, size = 1024
|
// CHECK-NEXT: offset = 1536, size = 1024
|
||||||
%c = tt.cat %cst3, %cst4 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A>
|
%c = tt.cat %cst3, %cst4 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A>
|
||||||
// CHECK: offset = 512, size = 1024
|
// CHECK-NEXT: offset = 512, size = 1024
|
||||||
%d = tt.cat %cst0, %cst0 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A>
|
%d = tt.cat %cst0, %cst0 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A>
|
||||||
return
|
return
|
||||||
// CHECK: size = 2560
|
// CHECK-NEXT: size = 2560
|
||||||
|
}
|
||||||
|
|
||||||
|
// CHECK-LABEL: scratch
|
||||||
|
func @scratch() {
|
||||||
|
// CHECK: offset = 0, size = 512
|
||||||
|
%cst0 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
|
||||||
|
// CHECK-NEXT: offset = 1056, size = 1024
|
||||||
|
%a = tt.cat %cst0, %cst0 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A>
|
||||||
|
// CHECK-NEXT: scratch offset = 32, size = 1024
|
||||||
|
// CHECK-NEXT: offset = 0, size = 32
|
||||||
|
%b = tt.reduce %a {redOp = 1 : i32, axis = 0 : i32} : tensor<32x16xf16, #A> -> tensor<16xf16, #A>
|
||||||
|
return
|
||||||
|
// CHECK-NEXT: size = 2080
|
||||||
|
}
|
||||||
|
|
||||||
|
// B0 -> (B1) -> B0
|
||||||
|
// Memory used by B1 can be reused by B0.
|
||||||
|
// CHECK-LABEL: multi_blocks_reuse
|
||||||
|
func @multi_blocks_reuse(%i1 : i1) {
|
||||||
|
// CHECK: offset = 0, size = 512
|
||||||
|
%cst0 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
|
||||||
|
// CHECK-NEXT: offset = 512, size = 512
|
||||||
|
%cst1 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
|
||||||
|
scf.if %i1 {
|
||||||
|
// CHECK-NEXT: offset = 1024, size = 1024
|
||||||
|
%a = tt.cat %cst0, %cst1 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A>
|
||||||
|
// CHECK-NEXT: offset = 1024, size = 1024
|
||||||
|
%b = tt.cat %cst0, %cst1 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A>
|
||||||
|
}
|
||||||
|
// CHECK-NEXT: offset = 0, size = 512
|
||||||
|
%cst2 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
|
||||||
|
// CHECK-NEXT: offset = 512, size = 512
|
||||||
|
%cst3 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
|
||||||
|
// CHECK-NEXT: offset = 1024, size = 1024
|
||||||
|
%a = tt.cat %cst2, %cst3 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A>
|
||||||
|
return
|
||||||
|
// CHECK-NEXT: size = 2048
|
||||||
|
}
|
||||||
|
|
||||||
|
// B0 -> (B1) -> (B2) -> B0
|
||||||
|
// Memory used by B0 cannot be reused by B1 or B2.
|
||||||
|
// CHECK-LABEL: multi_blocks_noreuse
|
||||||
|
func @multi_blocks_noreuse(%i1 : i1) {
|
||||||
|
// CHECK: offset = 0, size = 512
|
||||||
|
%cst0 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
|
||||||
|
// CHECK-NEXT: offset = 512, size = 512
|
||||||
|
%cst1 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
|
||||||
|
scf.if %i1 {
|
||||||
|
// CHECK-NEXT: offset = 1024, size = 1024
|
||||||
|
%a = tt.cat %cst0, %cst1 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A>
|
||||||
|
// CHECK-NEXT: offset = 1024, size = 1024
|
||||||
|
%b = tt.cat %cst0, %cst1 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A>
|
||||||
|
} else {
|
||||||
|
// CHECK-NEXT: offset = 1024, size = 512
|
||||||
|
%cst2 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
|
||||||
|
// CHECK-NEXT: offset = 1536, size = 512
|
||||||
|
%cst3 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
|
||||||
|
// CHECK-NEXT: offset = 2048, size = 1024
|
||||||
|
%a = tt.cat %cst2, %cst3 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A>
|
||||||
|
}
|
||||||
|
// CHECK-NEXT: offset = 1024, size = 1024
|
||||||
|
%a = tt.cat %cst0, %cst1 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A>
|
||||||
|
return
|
||||||
|
// CHECK-NEXT: size = 3072
|
||||||
}
|
}
|
||||||
|
178
test/Analysis/test-membar.mlir
Normal file
178
test/Analysis/test-membar.mlir
Normal file
@@ -0,0 +1,178 @@
|
|||||||
|
// RUN: triton-opt %s -split-input-file --mlir-disable-threading -test-print-membar 2>&1 | FileCheck %s
|
||||||
|
|
||||||
|
#AL = #triton_gpu.blocked<{sizePerThread = [1, 4], threadsPerWarp = [4, 8], warpsPerCTA = [4, 1], order = [1, 0]}>
|
||||||
|
#BL = #triton_gpu.blocked<{sizePerThread = [1, 4], threadsPerWarp = [1, 32], warpsPerCTA = [4, 1], order = [1, 0]}>
|
||||||
|
#A = #triton_gpu.shared<{vec = 2, perPhase = 2, maxPhase = 4, order = [1, 0]}>
|
||||||
|
#B = #triton_gpu.shared<{vec = 2, perPhase = 2, maxPhase = 4, order = [1, 0]}>
|
||||||
|
#C = #triton_gpu.mma<{version = 2, warpsPerCTA = [4, 1]}>
|
||||||
|
|
||||||
|
// CHECK-LABEL: matmul_loop
|
||||||
|
func @matmul_loop(%lb : index, %ub : index, %step : index, %A : !tt.ptr<f16>, %B : !tt.ptr<f16>) {
|
||||||
|
%a_ptr_init = tt.broadcast %A : (!tt.ptr<f16>) -> tensor<128x32x!tt.ptr<f16>, #AL>
|
||||||
|
%b_ptr_init = tt.broadcast %B : (!tt.ptr<f16>) -> tensor<32x128x!tt.ptr<f16>, #BL>
|
||||||
|
|
||||||
|
%a_mask = arith.constant dense<true> : tensor<128x32xi1, #AL>
|
||||||
|
%a_other = arith.constant dense<0.00e+00> : tensor<128x32xf16, #AL>
|
||||||
|
%b_mask = arith.constant dense<true> : tensor<32x128xi1, #BL>
|
||||||
|
%b_other = arith.constant dense<0.00e+00> : tensor<32x128xf16, #BL>
|
||||||
|
%c_init = arith.constant dense<0.00e+00> : tensor<128x128xf32, #C>
|
||||||
|
|
||||||
|
%a_off = arith.constant dense<4> : tensor<128x32xi32, #AL>
|
||||||
|
%b_off = arith.constant dense<4> : tensor<32x128xi32, #BL>
|
||||||
|
|
||||||
|
scf.for %iv = %lb to %ub step %step iter_args(%a_ptr = %a_ptr_init, %b_ptr = %b_ptr_init, %prev_c = %c_init) -> (tensor<128x32x!tt.ptr<f16>, #AL>, tensor<32x128x!tt.ptr<f16>, #BL>, tensor<128x128xf32, #C>) {
|
||||||
|
%a_ = tt.load %a_ptr, %a_mask, %a_other {cache = 1 : i32, evict = 1 : i32, isOtherUnspecified = false, isVolatile = false} : tensor<128x32xf16, #AL>
|
||||||
|
%a = triton_gpu.convert_layout %a_ : (tensor<128x32xf16, #AL>) -> tensor<128x32xf16, #A>
|
||||||
|
%b_ = tt.load %b_ptr, %b_mask, %b_other {cache = 1 : i32, evict = 1 : i32, isOtherUnspecified = false, isVolatile = false} : tensor<32x128xf16, #BL>
|
||||||
|
%b = triton_gpu.convert_layout %b_ : (tensor<32x128xf16, #BL>) -> tensor<32x128xf16, #B>
|
||||||
|
// CHECK: Membar 13
|
||||||
|
%c = tt.dot %a, %b, %prev_c {allowTF32 = true} : tensor<128x32xf16, #A> * tensor<32x128xf16, #B> -> tensor<128x128xf32, #C>
|
||||||
|
|
||||||
|
%next_a_ptr = tt.getelementptr %a_ptr, %a_off : tensor<128x32x!tt.ptr<f16>, #AL>
|
||||||
|
%next_b_ptr = tt.getelementptr %b_ptr, %b_off : tensor<32x128x!tt.ptr<f16>, #BL>
|
||||||
|
scf.yield %next_a_ptr, %next_b_ptr, %c : tensor<128x32x!tt.ptr<f16>, #AL>, tensor<32x128x!tt.ptr<f16>, #BL>, tensor<128x128xf32, #C>
|
||||||
|
}
|
||||||
|
return
|
||||||
|
}
|
||||||
|
|
||||||
|
// CHECK-LABEL: raw_single_block
|
||||||
|
func @raw_single_block(%A : !tt.ptr<f16>) {
|
||||||
|
%cst1 = arith.constant dense<true> : tensor<128x32xi1, #AL>
|
||||||
|
%cst2 = arith.constant dense<0.000000e+00> : tensor<128x32xf16, #AL>
|
||||||
|
%a_ptr = tt.broadcast %A : (!tt.ptr<f16>) -> tensor<128x32x!tt.ptr<f16>, #AL>
|
||||||
|
%a1_ = tt.load %a_ptr, %cst1, %cst2 {cache = 1 : i32, evict = 1 : i32, isOtherUnspecified = false, isVolatile = false} : tensor<128x32xf16, #AL>
|
||||||
|
%a1 = triton_gpu.convert_layout %a1_ : (tensor<128x32xf16, #AL>) -> tensor<128x32xf16, #A>
|
||||||
|
// CHECK: Membar 5
|
||||||
|
%a2 = triton_gpu.convert_layout %a1 : (tensor<128x32xf16, #A>) -> tensor<128x32xf16, #A>
|
||||||
|
return
|
||||||
|
}
|
||||||
|
|
||||||
|
// CHECK-LABEL: war_single_block
|
||||||
|
func @war_single_block(%A : !tt.ptr<f16>) {
|
||||||
|
%cst1 = arith.constant dense<true> : tensor<128x32xi1, #AL>
|
||||||
|
%cst2 = arith.constant dense<0.000000e+00> : tensor<128x32xf16, #AL>
|
||||||
|
%a_ptr = tt.broadcast %A : (!tt.ptr<f16>) -> tensor<128x32x!tt.ptr<f16>, #AL>
|
||||||
|
%a1_ = tt.load %a_ptr, %cst1, %cst2 {cache = 1 : i32, evict = 1 : i32, isOtherUnspecified = false, isVolatile = false} : tensor<128x32xf16, #AL>
|
||||||
|
%a1 = triton_gpu.convert_layout %a1_ : (tensor<128x32xf16, #AL>) -> tensor<128x32xf16, #A>
|
||||||
|
// CHECK: Membar 5
|
||||||
|
%a2 = triton_gpu.convert_layout %a1 : (tensor<128x32xf16, #A>) -> tensor<128x32xf16, #AL>
|
||||||
|
// CHECK-NEXT: Membar 7
|
||||||
|
%a3 = triton_gpu.convert_layout %a1_ : (tensor<128x32xf16, #AL>) -> tensor<128x32xf16, #A>
|
||||||
|
return
|
||||||
|
}
|
||||||
|
|
||||||
|
// CHECK-LABEL: scratch
|
||||||
|
func @scratch() {
|
||||||
|
%cst0 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
|
||||||
|
// CHECK: Membar 1
|
||||||
|
%a = tt.cat %cst0, %cst0 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A>
|
||||||
|
// CHECK-NEXT: Membar 3
|
||||||
|
%b = tt.reduce %a {redOp = 1 : i32, axis = 0 : i32} : tensor<32x16xf16, #A> -> tensor<16xf16, #A>
|
||||||
|
return
|
||||||
|
}
|
||||||
|
|
||||||
|
// CHECK-LABEL: async_wait
|
||||||
|
func @async_wait() {
|
||||||
|
%cst0 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
|
||||||
|
// CHECK: Membar 1
|
||||||
|
%a = tt.cat %cst0, %cst0 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A>
|
||||||
|
triton_gpu.async_wait {num = 4 : i32}
|
||||||
|
// CHECK-NEXT: Membar 4
|
||||||
|
%a_ = triton_gpu.convert_layout %a : (tensor<32x16xf16, #A>) -> tensor<32x16xf16, #AL>
|
||||||
|
return
|
||||||
|
}
|
||||||
|
|
||||||
|
// If branch inserted a barrier for %cst0 and %cst1, but else didn't, then the barrier should be inserted in the parent region
|
||||||
|
// CHECK-LABEL: multi_blocks
|
||||||
|
func @multi_blocks(%i1 : i1) {
|
||||||
|
%cst0 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
|
||||||
|
%cst1 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
|
||||||
|
scf.if %i1 {
|
||||||
|
// CHECK: Membar 2
|
||||||
|
%a = tt.cat %cst0, %cst1 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A>
|
||||||
|
scf.yield
|
||||||
|
} else {
|
||||||
|
%cst2 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
|
||||||
|
%cst3 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
|
||||||
|
// CHECK-NEXT: Membar 7
|
||||||
|
%b = tt.cat %cst2, %cst3 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A>
|
||||||
|
scf.yield
|
||||||
|
}
|
||||||
|
// CHECK-NEXT: Membar 10
|
||||||
|
%c = tt.cat %cst0, %cst1 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A>
|
||||||
|
return
|
||||||
|
}
|
||||||
|
|
||||||
|
// Both branches inserted a barrier for %cst0 and %cst1, then the barrier doesn't need to be inserted in the parent region
|
||||||
|
// CHECK-LABEL: multi_blocks_join_barrier
|
||||||
|
func @multi_blocks_join_barrier(%i1 : i1) {
|
||||||
|
%cst0 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
|
||||||
|
%cst1 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
|
||||||
|
scf.if %i1 {
|
||||||
|
// CHECK: Membar 2
|
||||||
|
%a = tt.cat %cst0, %cst1 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A>
|
||||||
|
scf.yield
|
||||||
|
} else {
|
||||||
|
// CHECK-NEXT: Membar 5
|
||||||
|
%a = tt.cat %cst0, %cst1 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A>
|
||||||
|
scf.yield
|
||||||
|
}
|
||||||
|
%a_ = triton_gpu.convert_layout %cst0 : (tensor<16x16xf16, #A>) -> tensor<16x16xf16, #AL>
|
||||||
|
return
|
||||||
|
}
|
||||||
|
|
||||||
|
// Read yielded tensor requires a barrier
|
||||||
|
// CHECK-LABEL: multi_blocks_yield
|
||||||
|
func @multi_blocks_yield(%i1 : i1) {
|
||||||
|
%cst0 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
|
||||||
|
%cst1 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
|
||||||
|
%a = scf.if %i1 -> (tensor<32x16xf16, #A>) {
|
||||||
|
// CHECK: Membar 2
|
||||||
|
%a = tt.cat %cst0, %cst1 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A>
|
||||||
|
scf.yield %a : tensor<32x16xf16, #A>
|
||||||
|
} else {
|
||||||
|
// CHECK-NEXT: Membar 5
|
||||||
|
%b = tt.cat %cst0, %cst1 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A>
|
||||||
|
scf.yield %b : tensor<32x16xf16, #A>
|
||||||
|
}
|
||||||
|
%a_ = triton_gpu.convert_layout %cst0 : (tensor<16x16xf16, #A>) -> tensor<16x16xf16, #AL>
|
||||||
|
// CHECK-NEXT: Membar 9
|
||||||
|
%b = tt.cat %a, %a {axis = 0} : (tensor<32x16xf16, #A>, tensor<32x16xf16, #A>) -> tensor<64x16xf16, #A>
|
||||||
|
return
|
||||||
|
}
|
||||||
|
|
||||||
|
// Conservatively add a barrier as if the branch (%i1) is never taken
|
||||||
|
// CHECK-LABEL: multi_blocks_noelse
|
||||||
|
func @multi_blocks_noelse(%i1 : i1) {
|
||||||
|
%cst0 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
|
||||||
|
%cst1 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
|
||||||
|
scf.if %i1 {
|
||||||
|
// CHECK: Membar 2
|
||||||
|
%a = tt.cat %cst0, %cst1 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A>
|
||||||
|
scf.yield
|
||||||
|
}
|
||||||
|
%a_ = triton_gpu.convert_layout %cst0 : (tensor<16x16xf16, #A>) -> tensor<16x16xf16, #AL>
|
||||||
|
return
|
||||||
|
}
|
||||||
|
|
||||||
|
// Conservatively add a barrier as if the branch (%i2) is never taken
|
||||||
|
// CHECK-LABEL: multi_blocks_nested_scf
|
||||||
|
func @multi_blocks_nested_scf(%i1 : i1, %i2 : i1) {
|
||||||
|
%cst0 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
|
||||||
|
%cst1 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
|
||||||
|
scf.if %i1 {
|
||||||
|
scf.if %i2 {
|
||||||
|
// CHECK: Membar 2
|
||||||
|
%b = tt.cat %cst0, %cst1 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A>
|
||||||
|
scf.yield
|
||||||
|
}
|
||||||
|
scf.yield
|
||||||
|
} else {
|
||||||
|
// CHECK-NEXT: Membar 6
|
||||||
|
%b = tt.cat %cst0, %cst1 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A>
|
||||||
|
scf.yield
|
||||||
|
}
|
||||||
|
// CHECK-NEXT: Membar 9
|
||||||
|
%a_ = triton_gpu.convert_layout %cst0 : (tensor<16x16xf16, #A>) -> tensor<16x16xf16, #AL>
|
||||||
|
return
|
||||||
|
}
|
@@ -1,6 +1,7 @@
|
|||||||
add_mlir_library(TritonTestAnalysis
|
add_mlir_library(TritonTestAnalysis
|
||||||
TestAxisInfo.cpp
|
TestAxisInfo.cpp
|
||||||
TestAllocation.cpp
|
TestAllocation.cpp
|
||||||
|
TestMembar.cpp
|
||||||
|
|
||||||
LINK_LIBS PUBLIC
|
LINK_LIBS PUBLIC
|
||||||
TritonAnalysis
|
TritonAnalysis
|
||||||
|
@@ -19,24 +19,29 @@ struct TestAllocationPass
|
|||||||
void runOnOperation() override {
|
void runOnOperation() override {
|
||||||
Operation *operation = getOperation();
|
Operation *operation = getOperation();
|
||||||
auto &os = llvm::errs();
|
auto &os = llvm::errs();
|
||||||
os << "Testing: " << operation->getName() << "\n";
|
// Convert to std::string can remove quotes from op_name
|
||||||
AllocationAnalysis analysis(operation);
|
auto op_name = SymbolTable::getSymbolName(operation).getValue().str();
|
||||||
|
os << op_name << "\n";
|
||||||
|
Allocation allocation(operation);
|
||||||
operation->walk([&](Operation *op) {
|
operation->walk([&](Operation *op) {
|
||||||
|
auto scratchBufferId = allocation.getBufferId(op);
|
||||||
|
if (scratchBufferId != Allocation::InvalidBufferId) {
|
||||||
|
size_t offset = allocation.getOffset(scratchBufferId);
|
||||||
|
size_t size = allocation.getAllocatedSize(scratchBufferId);
|
||||||
|
os << "scratch offset = " << offset << ", size = " << size << "\n";
|
||||||
|
}
|
||||||
if (op->getNumResults() < 1)
|
if (op->getNumResults() < 1)
|
||||||
return;
|
return;
|
||||||
for (Value result : op->getResults()) {
|
for (Value result : op->getResults()) {
|
||||||
Type type = result.getType();
|
auto bufferId = allocation.getBufferId(result);
|
||||||
if (auto tensorType = type.dyn_cast<RankedTensorType>()) {
|
if (bufferId != Allocation::InvalidBufferId) {
|
||||||
Attribute encoding = tensorType.getEncoding();
|
size_t offset = allocation.getOffset(bufferId);
|
||||||
if (encoding.isa<triton::gpu::TritonGPUSharedEncodingAttr>()) {
|
size_t size = allocation.getAllocatedSize(bufferId);
|
||||||
size_t offset = analysis.getOffset(result);
|
os << "offset = " << offset << ", size = " << size << "\n";
|
||||||
size_t size = analysis.getAllocatedSize(result);
|
|
||||||
os << "offset = " << offset << ", size = " << size << "\n";
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
});
|
});
|
||||||
os << "size = " << analysis.getSharedMemorySize() << "\n";
|
os << "size = " << allocation.getSharedMemorySize() << "\n";
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
|
50
test/lib/Analysis/TestMembar.cpp
Normal file
50
test/lib/Analysis/TestMembar.cpp
Normal file
@@ -0,0 +1,50 @@
|
|||||||
|
#include "mlir/Dialect/GPU/GPUDialect.h"
|
||||||
|
#include "mlir/IR/Dialect.h"
|
||||||
|
#include "mlir/Pass/Pass.h"
|
||||||
|
#include "triton/Analysis/Allocation.h"
|
||||||
|
#include "triton/Analysis/Membar.h"
|
||||||
|
|
||||||
|
using namespace mlir;
|
||||||
|
|
||||||
|
namespace {
|
||||||
|
|
||||||
|
struct TestMembarPass
|
||||||
|
: public PassWrapper<TestMembarPass, OperationPass<FuncOp>> {
|
||||||
|
|
||||||
|
// LLVM15+
|
||||||
|
// MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestMembarPass);
|
||||||
|
|
||||||
|
StringRef getArgument() const final { return "test-print-membar"; }
|
||||||
|
StringRef getDescription() const final {
|
||||||
|
return "print the result of the allocation pass";
|
||||||
|
}
|
||||||
|
|
||||||
|
void runOnOperation() override {
|
||||||
|
Operation *operation = getOperation();
|
||||||
|
auto &os = llvm::errs();
|
||||||
|
// Convert to std::string can remove quotes from op_name
|
||||||
|
auto op_name = SymbolTable::getSymbolName(operation).getValue().str();
|
||||||
|
os << op_name << "\n";
|
||||||
|
Allocation allocation(operation);
|
||||||
|
MembarAnalysis analysis(&allocation);
|
||||||
|
size_t operationId = 0;
|
||||||
|
operation->walk<WalkOrder::PreOrder>([&](Operation *op) {
|
||||||
|
if (dyn_cast<gpu::BarrierOp>(op)) {
|
||||||
|
os << "Membar " << operationId << "\n";
|
||||||
|
}
|
||||||
|
if (op->getNumRegions() == 0) {
|
||||||
|
// Don't count parent Operation to simplify the test.
|
||||||
|
operationId++;
|
||||||
|
}
|
||||||
|
return;
|
||||||
|
});
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace
|
||||||
|
|
||||||
|
namespace mlir {
|
||||||
|
namespace test {
|
||||||
|
void registerTestMembarPass() { PassRegistration<TestMembarPass>(); }
|
||||||
|
} // namespace test
|
||||||
|
} // namespace mlir
|
Reference in New Issue
Block a user