[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2022-04-30 00:47:08 +00:00
parent ea296daf2a
commit e15e7e5ae2
156 changed files with 274 additions and 274 deletions

View File

@@ -324,13 +324,13 @@ for different problem sizes.</p>
0 4096.0 9.600000 9.600000
1 8192.0 19.200000 19.200000
2 16384.0 38.400001 38.400001
3 32768.0 76.800002 76.800002
3 32768.0 63.999998 63.999998
4 65536.0 127.999995 127.999995
5 131072.0 219.428568 219.428568
6 262144.0 341.333321 341.333321
6 262144.0 341.333321 384.000001
7 524288.0 472.615390 472.615390
8 1048576.0 614.400016 614.400016
9 2097152.0 722.823517 702.171410
9 2097152.0 722.823517 722.823517
10 4194304.0 780.190482 780.190482
11 8388608.0 812.429770 812.429770
12 16777216.0 833.084721 833.084721
@@ -339,7 +339,7 @@ for different problem sizes.</p>
15 134217728.0 849.737435 850.656574
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 45.272 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 43.744 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>

View File

@@ -374,17 +374,17 @@ We will then compare its performance against (1) <code class="code docutils lite
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 512.000001 546.133347 190.511628
1 384.0 585.142862 558.545450 151.703707
0 256.0 512.000001 546.133347 188.321838
1 384.0 585.142862 585.142862 151.703707
2 512.0 655.360017 606.814814 154.566038
3 640.0 682.666684 640.000002 158.759699
3 640.0 682.666684 640.000002 160.000000
4 768.0 722.823517 664.216187 163.839992
.. ... ... ... ...
93 12160.0 812.359066 405.755985 198.834951
94 12288.0 814.111783 415.661740 198.995960
95 12416.0 812.498981 412.149375 198.655991
96 12544.0 812.566838 412.546756 198.815254
97 12672.0 812.633240 411.679167 198.971549
93 12160.0 812.359066 405.755985 199.038365
94 12288.0 814.111783 415.442160 199.298541
95 12416.0 812.498981 412.149375 198.954424
96 12544.0 812.566838 412.546756 199.111113
97 12672.0 812.633240 411.679167 199.264875
[98 rows x 4 columns]
</pre></div>
@@ -397,7 +397,7 @@ We will then compare its performance against (1) <code class="code docutils lite
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 21.936 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 23.206 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>

View File

@@ -569,41 +569,41 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 256.0 2.978909 ... 3.276800 2.978909
1 384.0 7.372800 ... 8.507077 7.899428
2 512.0 14.563555 ... 16.384000 15.420235
1 384.0 7.372800 ... 8.507077 8.507077
2 512.0 14.563555 ... 16.384000 16.384000
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 32.768000 ... 34.028308 34.028308
5 896.0 37.971025 ... 39.025776 39.025776
6 1024.0 51.150050 ... 53.773130 52.428801
5 896.0 37.971025 ... 40.140799 39.025776
6 1024.0 49.932191 ... 52.428801 52.428801
7 1152.0 45.242181 ... 46.656000 46.656000
8 1280.0 51.200001 ... 56.888887 56.109587
9 1408.0 64.138541 ... 67.305878 66.485074
10 1536.0 80.430545 ... 79.526831 78.643199
11 1664.0 62.929456 ... 62.929456 62.061463
11 1664.0 63.372618 ... 62.492442 62.061463
12 1792.0 72.983276 ... 72.512412 71.588687
13 1920.0 69.120002 ... 69.818184 70.172588
14 2048.0 73.584279 ... 76.959706 76.608294
13 1920.0 68.776119 ... 70.172588 70.172588
14 2048.0 73.908442 ... 76.959706 76.608294
15 2176.0 83.155572 ... 85.998493 85.269692
16 2304.0 68.251065 ... 77.057651 76.563695
17 2432.0 71.305746 ... 85.134737 85.134737
18 2560.0 78.019048 ... 81.310171 80.908642
19 2688.0 83.922689 ... 89.888756 88.628636
20 2816.0 84.035084 ... 83.873477 83.392363
21 2944.0 81.967162 ... 79.865439 82.646820
22 3072.0 82.420822 ... 88.335577 86.184329
23 3200.0 81.476768 ... 94.814812 94.117647
24 3328.0 83.130825 ... 84.995628 84.995628
25 3456.0 82.099354 ... 85.858966 88.304015
26 3584.0 87.254137 ... 97.840469 91.007486
27 3712.0 83.247783 ... 87.783251 86.716441
28 3840.0 85.070769 ... 92.236860 84.421376
29 3968.0 93.720380 ... 84.154440 91.335278
30 4096.0 86.536250 ... 87.239345 93.142072
17 2432.0 71.305746 ... 85.393507 84.877538
18 2560.0 77.833728 ... 81.310171 80.511054
19 2688.0 84.295681 ... 89.149366 89.676257
20 2816.0 84.523664 ... 83.792906 82.602666
21 2944.0 82.646820 ... 82.921853 82.921853
22 3072.0 81.707223 ... 85.147525 88.197981
23 3200.0 84.880639 ... 93.023256 93.023256
24 3328.0 83.130825 ... 84.895397 85.602017
25 3456.0 80.061141 ... 89.779026 91.304157
26 3584.0 87.211821 ... 92.696281 94.647779
27 3712.0 85.748791 ... 89.035062 87.475786
28 3840.0 81.798814 ... 91.097196 89.151148
29 3968.0 89.855624 ... 87.347124 89.723483
30 4096.0 87.552332 ... 89.478485 92.182504
[31 rows x 5 columns]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 22.838 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 19.631 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>

View File

@@ -195,35 +195,35 @@ to download the full example code</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>layer-norm-backward:
N Triton Torch Apex
0 1024.0 311.088617 97.912354 303.407414
1 1536.0 351.085717 134.050910 341.333333
2 2048.0 423.724127 160.627450 334.367350
3 2560.0 461.954908 181.238943 330.322572
4 3072.0 511.999982 192.501302 317.793096
1 1536.0 351.085717 134.540150 341.333333
2 2048.0 423.724127 161.154101 323.368435
3 2560.0 465.454542 181.238943 325.079368
4 3072.0 515.580429 192.501302 321.956335
5 3584.0 551.384634 208.271186 312.785456
6 4096.0 568.231237 220.412561 296.990947
7 4608.0 498.162157 232.336141 289.507855
8 5120.0 527.381977 242.366855 286.433562
9 5632.0 538.517949 243.107920 288.820505
10 6144.0 542.117638 248.661056 286.322318
11 6656.0 528.953642 255.590406 285.767438
12 7168.0 505.976473 260.260201 284.821192
6 4096.0 568.231237 220.907859 298.796351
7 4608.0 498.162157 232.825259 287.251954
8 5120.0 527.381977 242.366855 285.104413
9 5632.0 540.671974 243.107920 290.060087
10 6144.0 542.117638 248.661056 286.879370
11 6656.0 528.953642 256.000009 285.767438
12 7168.0 507.469040 260.260201 284.821192
13 7680.0 485.052616 262.938666 280.121579
14 8192.0 460.440290 267.493874 284.526763
14 8192.0 460.440290 266.406514 284.526763
15 8704.0 416.127506 267.815384 285.377055
16 9216.0 429.483477 271.391419 288.375482
17 9728.0 437.213490 280.278512 289.667485
18 10240.0 446.025405 286.433562 290.153487
19 10752.0 430.079980 246.935876 290.267711
17 9728.0 437.213490 280.615388 290.027323
18 10240.0 446.836366 286.433562 290.153487
19 10752.0 429.364408 246.699797 290.267711
20 11264.0 429.104745 245.536784 286.980888
21 11776.0 423.089806 249.667843 288.981596
22 12288.0 419.504980 254.673582 294.911986
23 12800.0 414.016170 253.884294 288.180121
22 12288.0 419.504980 254.453844 294.911986
23 12800.0 414.016170 253.884294 289.811310
24 13312.0 412.242569 252.959629 290.443638
25 13824.0 406.090579 257.190689 292.056329
25 13824.0 406.090579 257.390218 292.056329
26 14336.0 396.387109 254.862216 287.198654
27 14848.0 386.498925 257.665934 289.481735
28 15360.0 376.163261 257.790220 288.225185
29 15872.0 367.691129 261.626369 290.562936
27 14848.0 386.498925 257.852379 289.717061
28 15360.0 376.163261 257.970599 286.879376
29 15872.0 368.046389 261.626369 290.341468
</pre></div>
</div>
<div class="line-block">
@@ -477,7 +477,7 @@ to download the full example code</p>
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 13.302 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 11.667 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>

View File

@@ -174,7 +174,7 @@
<div class="section" id="computation-times">
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline"></a></h1>
<p><strong>12:43.358</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<p><strong>12:38.260</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 85%" />
@@ -183,23 +183,23 @@
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
<td><p>05:22.838</p></td>
<td><p>05:19.631</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
<td><p>03:21.936</p></td>
<td><p>03:23.206</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">Layer Normalization</span></a> (<code class="docutils literal notranslate"><span class="pre">05-layer-norm.py</span></code>)</p></td>
<td><p>02:13.302</p></td>
<td><p>02:11.667</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
<td><p>01:45.272</p></td>
<td><p>01:43.744</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>
<td><p>00:00.010</p></td>
<td><p>00:00.011</p></td>
<td><p>0.0 MB</p></td>
</tr>
</tbody>