[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2022-04-28 00:46:19 +00:00
parent 9bf9b2f3d8
commit e7903f3c77
158 changed files with 300 additions and 300 deletions

View File

@@ -324,8 +324,8 @@ for different problem sizes.</p>
size Triton Torch
0 4096.0 9.600000 9.600000
1 8192.0 19.200000 19.200000
2 16384.0 38.400001 38.400001
3 32768.0 76.800002 76.800002
2 16384.0 31.999999 38.400001
3 32768.0 76.800002 63.999998
4 65536.0 127.999995 127.999995
5 131072.0 219.428568 219.428568
6 262144.0 341.333321 341.333321
@@ -340,7 +340,7 @@ for different problem sizes.</p>
15 134217728.0 849.737435 850.656574
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 49.234 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 40.129 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>

View File

@@ -369,17 +369,17 @@ We will then compare its performance against (1) <code class="code docutils lite
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 546.133347 512.000001 188.321838
1 384.0 585.142862 585.142862 151.703707
2 512.0 655.360017 606.814814 154.566038
0 256.0 512.000001 546.133347 186.181817
1 384.0 585.142862 558.545450 151.703707
2 512.0 655.360017 585.142849 154.566038
3 640.0 682.666684 640.000002 158.759699
4 768.0 722.823517 664.216187 162.754967
4 768.0 722.823517 646.736871 163.839992
.. ... ... ... ...
93 12160.0 814.058574 405.755985 198.936606
94 12288.0 814.111783 415.442160 199.096718
95 12416.0 814.163950 411.296057 198.854847
96 12544.0 814.214963 412.971190 198.913776
97 12672.0 814.265046 412.097543 199.069228
93 12160.0 814.058574 405.755985 199.038365
94 12288.0 814.111783 415.661740 199.197579
95 12416.0 814.163950 412.149375 198.954424
96 12544.0 814.214963 412.546756 199.012395
97 12672.0 814.265046 411.679167 199.167004
[98 rows x 4 columns]
</pre></div>
@@ -392,7 +392,7 @@ We will then compare its performance against (1) <code class="code docutils lite
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 28.564 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 22.121 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>

View File

@@ -564,42 +564,42 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 256.0 2.730667 ... 2.978909 2.978909
1 384.0 7.372800 ... 8.507077 8.507077
2 512.0 14.563555 ... 15.420235 16.384000
0 256.0 2.730667 ... 3.276800 2.978909
1 384.0 7.372800 ... 7.899428 8.507077
2 512.0 14.563555 ... 15.420235 15.420235
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 32.768000 ... 35.389441 34.028308
4 768.0 31.597714 ... 35.389441 34.028308
5 896.0 37.971025 ... 40.140799 40.140799
6 1024.0 49.932191 ... 53.773130 53.773130
7 1152.0 45.242181 ... 48.161033 47.396572
8 1280.0 51.200001 ... 57.690139 57.690139
9 1408.0 64.138541 ... 68.147202 67.305878
10 1536.0 79.526831 ... 80.430545 80.430545
11 1664.0 63.372618 ... 63.372618 62.929456
9 1408.0 64.138541 ... 68.147202 68.147202
10 1536.0 80.430545 ... 80.430545 80.430545
11 1664.0 62.929456 ... 63.372618 62.929456
12 1792.0 72.983276 ... 63.499573 63.142831
13 1920.0 68.776119 ... 71.257735 71.257735
14 2048.0 73.908442 ... 78.033565 77.672296
13 1920.0 69.120002 ... 71.626943 71.257735
14 2048.0 73.584279 ... 78.033565 77.672296
15 2176.0 83.155572 ... 87.115360 86.739860
16 2304.0 68.446623 ... 77.810656 77.810656
17 2432.0 71.487187 ... 75.522751 75.522751
16 2304.0 68.251065 ... 77.810656 77.558029
17 2432.0 71.305746 ... 75.320281 75.320281
18 2560.0 77.833728 ... 82.539044 82.125311
19 2688.0 84.295681 ... 90.102270 91.185232
20 2816.0 84.197315 ... 84.197315 83.712490
21 2944.0 82.373605 ... 82.509987 84.111450
22 3072.0 82.062468 ... 89.451983 87.651868
23 3200.0 80.910237 ... 96.822991 96.822991
24 3328.0 83.516586 ... 84.052885 83.130825
25 3456.0 82.604067 ... 86.970406 89.679166
26 3584.0 84.072363 ... 91.563533 98.699661
27 3712.0 85.822459 ... 84.017953 88.326564
28 3840.0 80.960466 ... 86.130841 91.549669
29 3968.0 90.825409 ... 91.643962 84.856701
30 4096.0 93.433852 ... 91.304576 90.443212
19 2688.0 83.922689 ... 90.966561 90.532356
20 2816.0 83.233226 ... 84.035084 83.552120
21 2944.0 82.102191 ... 83.337844 84.182483
22 3072.0 81.005868 ... 90.020831 89.451983
23 3200.0 84.880639 ... 96.385543 95.238096
24 3328.0 83.905938 ... 84.995628 85.297742
25 3456.0 81.108217 ... 86.689860 89.380896
26 3584.0 86.540320 ... 99.244365 99.684470
27 3712.0 82.287760 ... 85.163978 86.942857
28 3840.0 84.842346 ... 87.355452 92.468225
29 3968.0 87.097744 ... 92.163097 84.504108
30 4096.0 93.271527 ... 93.077479 87.324485
[31 rows x 5 columns]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 6 minutes 55.735 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 49.071 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>

View File

@@ -372,7 +372,7 @@ to explore the <cite>triton/language/random</cite> folder!</p>
<dd><p>Nitish Srivastava and Geoffrey Hinton and Alex Krizhevsky and Ilya Sutskever and Ruslan Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, JMLR 2014</p>
</dd>
</dl>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.326 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.012 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-04-low-memory-dropout-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/c9aed78977a4c05741d675a38dde3d7d/04-low-memory-dropout.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">04-low-memory-dropout.py</span></code></a></p>

View File

@@ -194,36 +194,36 @@ to download the full example code</p>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>layer-norm-backward:
N Triton Torch Apex
0 1024.0 361.411758 99.497980 315.076934
1 1536.0 405.098894 133.083026 344.523365
2 2048.0 496.484863 158.045011 332.108094
3 2560.0 458.507457 182.857144 328.556154
4 3072.0 519.211251 191.501303 316.429186
5 3584.0 554.941930 207.768111 310.527060
6 4096.0 558.545450 219.919464 297.890900
7 4608.0 500.416301 231.849059 289.507855
8 5120.0 527.381977 244.294240 289.811322
9 5632.0 542.843364 244.426754 291.310338
10 6144.0 550.208948 251.202731 288.000001
11 6656.0 536.053693 256.000009 286.793541
12 7168.0 513.528374 253.734520 277.470965
13 7680.0 486.332448 266.358392 284.884090
14 8192.0 467.002371 258.694729 277.694924
15 8704.0 414.476194 267.130429 286.158893
16 9216.0 427.822068 273.066667 289.507855
17 9728.0 439.683593 279.942444 288.950501
18 10240.0 445.217381 287.102804 289.811322
19 10752.0 431.518385 246.699797 289.941565
20 11264.0 427.071098 246.432094 288.204696
21 11776.0 421.198220 249.667843 289.573776
22 12288.0 414.784810 254.673582 294.617366
23 12800.0 411.796260 254.094291 288.450715
24 13312.0 410.125805 253.360814 289.391298
25 13824.0 403.620451 256.991469 292.056329
26 14336.0 397.761846 255.429842 288.402346
27 14848.0 383.586664 256.922861 288.310684
28 15360.0 379.649845 258.332158 288.902809
29 15872.0 372.363640 261.806182 289.899545
0 1024.0 361.411758 97.523810 303.407414
1 1536.0 405.098894 134.050910 341.333333
2 2048.0 491.520012 160.627450 334.367350
3 2560.0 461.954908 180.705883 330.322572
4 3072.0 515.580429 191.999993 323.368415
5 3584.0 558.545477 207.768111 310.527060
6 4096.0 564.965515 220.907859 297.890900
7 4608.0 502.690905 232.825259 287.251954
8 5120.0 525.128191 242.366855 285.104413
9 5632.0 540.671974 243.107920 289.438969
10 6144.0 544.118087 248.661056 286.322318
11 6656.0 525.473708 256.000009 285.767438
12 7168.0 503.017523 259.867079 284.821192
13 7680.0 483.779539 262.938666 280.121579
14 8192.0 463.698115 266.406514 284.115618
15 8704.0 414.476194 267.472468 284.987724
16 9216.0 426.996150 271.391419 287.999990
17 9728.0 437.213490 280.615388 289.667485
18 10240.0 446.836366 286.100109 289.811322
19 10752.0 429.364408 246.699797 290.267711
20 11264.0 427.071098 245.313973 286.980888
21 11776.0 420.571432 249.667843 288.981596
22 12288.0 416.542386 254.673582 294.617366
23 12800.0 411.244989 253.884294 289.811310
24 13312.0 409.599999 252.959629 290.443638
25 13824.0 405.098897 257.290415 292.056329
26 14336.0 395.021816 255.051144 286.719986
27 14848.0 386.080180 257.852379 289.246765
28 15360.0 380.041240 257.790220 286.879376
29 15872.0 370.913333 261.626369 289.679087
</pre></div>
</div>
<div class="line-block">
@@ -487,7 +487,7 @@ to download the full example code</p>
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 12.794 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 11.654 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>

View File

@@ -174,7 +174,7 @@
<div class="section" id="computation-times">
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline"></a></h1>
<p><strong>14:26.653</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<p><strong>13:02.987</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 85%" />
@@ -183,23 +183,23 @@
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
<td><p>06:55.735</p></td>
<td><p>05:49.071</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
<td><p>03:28.564</p></td>
<td><p>03:22.121</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">Layer Normalization</span></a> (<code class="docutils literal notranslate"><span class="pre">05-layer-norm.py</span></code>)</p></td>
<td><p>02:12.794</p></td>
<td><p>02:11.654</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
<td><p>01:49.234</p></td>
<td><p>01:40.129</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>
<td><p>00:00.326</p></td>
<td><p>00:00.012</p></td>
<td><p>0.0 MB</p></td>
</tr>
</tbody>