[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2021-08-03 00:13:32 +00:00
parent b01d514815
commit e7c395b279
19 changed files with 89 additions and 89 deletions

View File

@@ -323,7 +323,7 @@ for different problem sizes.</p>
15 134217728.0 851.577704 850.656574
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 11.032 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 10.984 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>

View File

@@ -216,7 +216,7 @@ Let us consider instead the case of a simple (numerically stabilized) softmax op
<span class="c1"># read 2MN elements ; write MN elements</span>
<span class="n">z</span> <span class="o">=</span> <span class="n">x</span> <span class="o">-</span> <span class="n">x_max</span><span class="p">[:,</span> <span class="kc">None</span><span class="p">]</span>
<span class="c1"># read MN elements ; write MN elements</span>
<span class="n">numerator</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">exp</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">numerator</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">exp</span><span class="p">(</span><span class="n">z</span><span class="p">)</span>
<span class="c1"># read MN elements ; write M elements</span>
<span class="n">denominator</span> <span class="o">=</span> <span class="n">numerator</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">dim</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="c1"># read 2MN elements ; write MN elements</span>
@@ -346,17 +346,17 @@ We will then compare its performance against (1) <code class="code docutils lite
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 512.000001 546.133347 273.066674
1 384.0 585.142862 585.142862 267.130429
2 512.0 630.153853 606.814814 264.258068
3 640.0 682.666684 640.000002 269.473696
4 768.0 702.171410 664.216187 273.066663
0 256.0 512.000001 546.133347 186.181817
1 384.0 585.142862 585.142862 153.600004
2 512.0 630.153853 606.814814 154.566038
3 640.0 682.666684 640.000002 160.000000
4 768.0 702.171410 664.216187 162.754967
.. ... ... ... ...
93 12160.0 812.359066 406.179533 329.483481
94 12288.0 812.429770 415.661740 329.602681
95 12416.0 810.840807 412.149375 329.173158
96 12544.0 810.925276 412.546756 329.292871
97 12672.0 811.007961 412.097543 329.410251
93 12160.0 812.359066 406.179533 198.936606
94 12288.0 812.429770 416.101597 199.298541
95 12416.0 810.840807 412.149375 198.854847
96 12544.0 810.925276 412.971190 199.111113
97 12672.0 811.007961 412.097543 199.167004
[98 rows x 4 columns]
</pre></div>
@@ -370,7 +370,7 @@ This means that when temporary data is too large to fit entirely in the GPU
Note that our Triton kernel is not only faster than PyTorchs CUDA kernel, it is also <strong>easier to read, understand and maintain</strong>.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 8.174 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 13.269 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>

View File

@@ -476,42 +476,42 @@ tensor(True, device=&#39;cuda:0&#39;)
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 128.0 0.455111 ... 0.512000 0.512000
1 256.0 2.978909 ... 2.978909 2.978909
2 384.0 7.372800 ... 7.899428 7.899428
1 256.0 2.730667 ... 2.978909 2.978909
2 384.0 7.372800 ... 8.507077 8.507077
3 512.0 14.563555 ... 16.384000 15.420235
4 640.0 22.260869 ... 24.380953 24.380953
5 768.0 32.768000 ... 34.028308 34.028308
6 896.0 39.025776 ... 39.025776 39.025776
7 1024.0 51.150050 ... 52.428801 52.428801
7 1024.0 49.932191 ... 52.428801 52.428801
8 1152.0 44.566925 ... 46.656000 46.656000
9 1280.0 51.200001 ... 56.109587 56.109587
10 1408.0 64.138541 ... 65.684049 65.684049
11 1536.0 80.430545 ... 76.106321 75.296679
12 1664.0 63.372618 ... 62.061463 61.636381
13 1792.0 72.983276 ... 68.953520 68.533074
14 1920.0 69.120002 ... 68.435645 68.435645
15 2048.0 73.908442 ... 75.573044 75.234154
16 2176.0 83.500614 ... 80.173899 79.855747
17 2304.0 68.446623 ... 73.051599 72.607513
18 2432.0 71.125224 ... 81.197876 80.963875
19 2560.0 77.649287 ... 76.027843 76.740048
20 2688.0 83.552988 ... 83.186525 82.823267
21 2816.0 84.035084 ... 76.921000 79.733474
22 2944.0 82.102191 ... 80.122235 78.729910
23 3072.0 82.540970 ... 82.661468 82.661468
24 3200.0 84.432717 ... 89.385477 84.432717
25 3328.0 83.905938 ... 86.113988 86.528001
26 3456.0 82.015834 ... 83.545665 84.156124
27 3584.0 87.466332 ... 92.600816 84.988707
28 3712.0 85.163978 ... 82.902362 83.666116
29 3840.0 84.292684 ... 84.550462 85.070769
30 3968.0 89.921841 ... 87.472354 87.409694
31 4096.0 93.792965 ... 89.478485 90.260743
10 1408.0 64.138541 ... 65.684049 64.902096
11 1536.0 80.430545 ... 76.106321 76.106321
12 1664.0 63.372618 ... 61.636381 61.636381
13 1792.0 72.983276 ... 69.379162 68.953520
14 1920.0 68.435645 ... 69.818184 68.776119
15 2048.0 73.584279 ... 75.915006 75.234154
16 2176.0 83.500614 ... 78.608000 79.540109
17 2304.0 68.251065 ... 73.051599 72.607513
18 2432.0 71.125224 ... 81.669953 80.269900
19 2560.0 77.833728 ... 75.328737 74.812787
20 2688.0 81.576466 ... 81.227100 82.823267
21 2816.0 83.392363 ... 78.868366 77.330158
22 2944.0 81.698415 ... 80.122235 79.356738
23 3072.0 80.890151 ... 81.589488 83.391907
24 3200.0 84.656085 ... 85.447263 88.033012
25 3328.0 82.939284 ... 86.632127 82.558825
26 3456.0 81.518272 ... 84.954233 84.420490
27 3584.0 83.254996 ... 94.747514 95.654673
28 3712.0 86.192706 ... 88.955779 88.797643
29 3840.0 84.809814 ... 84.874902 84.356981
30 3968.0 89.593789 ... 84.738843 84.212518
31 4096.0 93.596744 ... 83.833686 90.933423
[32 rows x 5 columns]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 2.376 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 16.432 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>

View File

@@ -174,7 +174,7 @@
<div class="section" id="computation-times">
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline"></a></h1>
<p><strong>03:21.583</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<p><strong>03:40.685</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 85%" />
@@ -183,15 +183,15 @@
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
<td><p>02:02.376</p></td>
<td><p>02:16.432</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
<td><p>01:08.174</p></td>
<td><p>01:13.269</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
<td><p>00:11.032</p></td>
<td><p>00:10.984</p></td>
<td><p>0.0 MB</p></td>
</tr>
</tbody>