[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2022-05-06 00:44:25 +00:00
parent 19398e6d8a
commit ebf28cdc4b
158 changed files with 278 additions and 278 deletions

View File

@@ -324,22 +324,22 @@ for different problem sizes.</p>
0 4096.0 9.600000 9.600000
1 8192.0 19.200000 19.200000
2 16384.0 38.400001 38.400001
3 32768.0 76.800002 63.999998
3 32768.0 76.800002 76.800002
4 65536.0 127.999995 127.999995
5 131072.0 219.428568 219.428568
6 262144.0 341.333321 341.333321
7 524288.0 472.615390 472.615390
8 1048576.0 614.400016 614.400016
9 2097152.0 722.823517 702.171410
9 2097152.0 722.823517 722.823517
10 4194304.0 780.190482 780.190482
11 8388608.0 812.429770 812.429770
12 16777216.0 833.084721 833.084721
13 33554432.0 842.004273 842.004273
14 67108864.0 847.448255 847.448255
14 67108864.0 847.448255 848.362445
15 134217728.0 849.737435 850.656574
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 40.309 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 48.227 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>

View File

@@ -374,17 +374,17 @@ We will then compare its performance against (1) <code class="code docutils lite
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 512.000001 546.133347 186.181817
1 384.0 585.142862 558.545450 151.703707
2 512.0 655.360017 585.142849 154.566038
0 256.0 512.000001 546.133347 190.511628
1 384.0 585.142862 558.545450 149.853661
2 512.0 655.360017 606.814814 154.566038
3 640.0 682.666684 640.000002 158.759699
4 768.0 702.171410 646.736871 163.839992
4 768.0 722.823517 664.216187 162.754967
.. ... ... ... ...
93 12160.0 812.359066 405.755985 198.631953
94 12288.0 814.111783 415.442160 198.895304
95 12416.0 812.498981 411.722274 198.457532
96 12544.0 812.566838 412.546756 198.716830
97 12672.0 812.633240 411.679167 198.873965
93 12160.0 812.359066 405.755985 198.733401
94 12288.0 814.111783 415.661740 199.096718
95 12416.0 812.498981 412.149375 198.755369
96 12544.0 812.566838 412.546756 198.815254
97 12672.0 812.633240 411.888249 198.971549
[98 rows x 4 columns]
</pre></div>
@@ -397,7 +397,7 @@ We will then compare its performance against (1) <code class="code docutils lite
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 23.025 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 25.246 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>

View File

@@ -573,37 +573,37 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
2 512.0 14.563555 ... 16.384000 16.384000
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 32.768000 ... 34.028308 34.028308
5 896.0 37.971025 ... 39.025776 39.025776
5 896.0 37.971025 ... 39.025776 37.971025
6 1024.0 49.932191 ... 52.428801 52.428801
7 1152.0 45.242181 ... 46.656000 46.656000
8 1280.0 51.200001 ... 56.888887 56.109587
9 1408.0 64.138541 ... 66.485074 66.485074
8 1280.0 51.200001 ... 56.888887 56.888887
9 1408.0 64.138541 ... 67.305878 66.485074
10 1536.0 80.430545 ... 79.526831 78.643199
11 1664.0 63.372618 ... 62.492442 62.061463
12 1792.0 72.983276 ... 72.512412 71.588687
13 1920.0 69.120002 ... 70.530615 70.172588
14 2048.0 73.584279 ... 76.959706 76.608294
12 1792.0 72.983276 ... 72.047592 71.588687
13 1920.0 68.776119 ... 70.530615 70.530615
14 2048.0 73.908442 ... 76.959706 76.608294
15 2176.0 83.155572 ... 85.998493 85.269692
16 2304.0 68.251065 ... 77.307030 76.809875
17 2432.0 71.305746 ... 84.877538 84.367759
18 2560.0 77.833728 ... 81.310171 81.108913
19 2688.0 83.922689 ... 90.102270 89.044730
20 2816.0 82.368662 ... 83.873477 83.392363
21 2944.0 81.298583 ... 82.921853 82.921853
22 3072.0 82.301023 ... 88.750943 88.473602
23 3200.0 80.604535 ... 91.038407 95.380032
24 3328.0 82.041364 ... 84.003845 84.596116
25 3456.0 81.766291 ... 91.097818 90.994998
26 3584.0 85.674507 ... 93.661869 95.451583
27 3712.0 84.017953 ... 88.326564 89.997611
28 3840.0 82.531346 ... 91.022218 88.050954
29 3968.0 88.938731 ... 87.976885 89.591729
30 4096.0 90.079009 ... 87.438257 93.174402
16 2304.0 68.446623 ... 76.809875 76.563695
17 2432.0 71.305746 ... 83.366361 84.877538
18 2560.0 77.833728 ... 81.512437 81.310171
19 2688.0 84.295681 ... 90.102270 89.254248
20 2816.0 84.605647 ... 83.873477 82.602666
21 2944.0 81.431424 ... 82.646820 82.921853
22 3072.0 81.589488 ... 88.612060 88.612060
23 3200.0 84.044651 ... 94.814812 91.298148
24 3328.0 83.808259 ... 84.895397 85.500351
25 3456.0 81.932484 ... 86.876687 85.676480
26 3584.0 87.381330 ... 98.808123 92.983857
27 3712.0 81.415926 ... 87.937800 85.822459
28 3840.0 82.654712 ... 92.468225 85.201850
29 3968.0 92.652949 ... 80.147087 77.377257
30 4096.0 91.867031 ... 93.336389 89.181212
[31 rows x 5 columns]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 27.828 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 57.968 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>

View File

@@ -371,7 +371,7 @@ to explore the <cite>triton/language/random</cite> folder!</p>
<dd><p>Nitish Srivastava and Geoffrey Hinton and Alex Krizhevsky and Ilya Sutskever and Ruslan Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, JMLR 2014</p>
</dd>
</dl>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.011 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.110 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-04-low-memory-dropout-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/c9aed78977a4c05741d675a38dde3d7d/04-low-memory-dropout.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">04-low-memory-dropout.py</span></code></a></p>

View File

@@ -196,34 +196,34 @@ to download the full example code</p>
N Triton Torch Apex
0 1024.0 311.088617 97.912354 303.407414
1 1536.0 351.085717 134.540150 341.333333
2 2048.0 423.724127 161.154101 323.368435
3 2560.0 465.454542 181.238943 325.079368
4 3072.0 515.580429 192.501302 321.956335
2 2048.0 427.408686 161.154101 334.367350
3 2560.0 465.454542 181.238943 330.322572
4 3072.0 515.580429 192.501302 323.368415
5 3584.0 551.384634 208.271186 311.652167
6 4096.0 568.231237 220.907859 298.796351
6 4096.0 568.231237 220.907859 297.890900
7 4608.0 498.162157 232.825259 287.251954
8 5120.0 525.128191 242.366855 284.444444
9 5632.0 538.517949 243.107920 290.060087
8 5120.0 525.128191 242.366855 285.104413
9 5632.0 540.671974 243.107920 290.060087
10 6144.0 544.118087 248.661056 286.879370
11 6656.0 528.953642 255.590406 285.767438
12 7168.0 507.469040 260.260201 284.821192
13 7680.0 485.052616 262.938666 280.121579
14 8192.0 460.440290 266.406514 284.115618
15 8704.0 416.127506 267.472468 285.377055
16 9216.0 429.483477 271.058828 288.375482
15 8704.0 416.127506 267.815384 284.987724
16 9216.0 429.483477 271.391419 288.375482
17 9728.0 437.213490 280.615388 290.027323
18 10240.0 446.025405 286.433562 290.153487
19 10752.0 430.079980 246.699797 290.267711
20 11264.0 429.104745 245.536784 286.980888
21 11776.0 423.089806 249.447482 288.981596
22 12288.0 419.504980 254.453844 294.617366
19 10752.0 429.721875 246.935876 290.267711
20 11264.0 429.786952 245.536784 286.980888
21 11776.0 423.724129 249.667843 289.277383
22 12288.0 419.504980 254.673582 294.617366
23 12800.0 414.016170 253.884294 289.811310
24 13312.0 411.711355 252.959629 290.707920
24 13312.0 412.242569 252.959629 290.707920
25 13824.0 406.090579 257.390218 292.056329
26 14336.0 395.930964 254.862216 287.198654
27 14848.0 386.498925 257.759123 289.717061
28 15360.0 376.163261 257.970599 286.767793
29 15872.0 368.402336 261.446802 290.341468
26 14336.0 396.387109 254.862216 287.198654
27 14848.0 386.918555 257.852379 289.717061
28 15360.0 376.163261 257.970599 287.775181
29 15872.0 368.046389 261.626369 290.341468
</pre></div>
</div>
<div class="line-block">
@@ -477,7 +477,7 @@ to download the full example code</p>
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 12.252 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 13.534 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>

View File

@@ -174,7 +174,7 @@
<div class="section" id="computation-times">
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline"></a></h1>
<p><strong>12:43.426</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<p><strong>13:25.084</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 85%" />
@@ -183,23 +183,23 @@
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
<td><p>05:27.828</p></td>
<td><p>05:57.968</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
<td><p>03:23.025</p></td>
<td><p>03:25.246</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">Layer Normalization</span></a> (<code class="docutils literal notranslate"><span class="pre">05-layer-norm.py</span></code>)</p></td>
<td><p>02:12.252</p></td>
<td><p>02:13.534</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
<td><p>01:40.309</p></td>
<td><p>01:48.227</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>
<td><p>00:00.011</p></td>
<td><p>00:00.110</p></td>
<td><p>0.0 MB</p></td>
</tr>
</tbody>