[PYTHON] Added missing files for nn submodule

This commit is contained in:
Philippe Tillet
2020-02-24 17:58:24 -05:00
committed by Philippe Tillet
parent 3d769b57e2
commit ecb0d81b2d
4 changed files with 443 additions and 0 deletions

View File

@@ -0,0 +1,2 @@
from .conv import replace_conv2d
from .attention import replace_mah

View File

@@ -0,0 +1,312 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
import triton
def bmm(x, w, mask = None):
b, m, k = x.size()
b, k, n = w.size()
out = torch.empty([b, m, n], device=x.device)
triton.ops.einsum('bmk,bkn->bmn', x, w, out, mask=mask, bench=False)
return out
def multi_head_attention_forward(query, # type: Tensor
key, # type: Tensor
value, # type: Tensor
embed_dim_to_check, # type: int
num_heads, # type: int
in_proj_weight, # type: Tensor
in_proj_bias, # type: Tensor
bias_k, # type: Optional[Tensor]
bias_v, # type: Optional[Tensor]
add_zero_attn, # type: bool
dropout_p, # type: float
out_proj_weight, # type: Tensor
out_proj_bias, # type: Tensor
training=True, # type: bool
key_padding_mask=None, # type: Optional[Tensor]
need_weights=True, # type: bool
attn_mask=None, # type: Optional[Tensor]
use_separate_proj_weight=False, # type: bool
q_proj_weight=None, # type: Optional[Tensor]
k_proj_weight=None, # type: Optional[Tensor]
v_proj_weight=None, # type: Optional[Tensor]
static_k=None, # type: Optional[Tensor]
static_v=None, # type: Optional[Tensor]
acc_bitmask=None
):
# type: (...) -> Tuple[Tensor, Optional[Tensor]]
r"""
Args:
query, key, value: map a query and a set of key-value pairs to an output.
See "Attention Is All You Need" for more details.
embed_dim_to_check: total dimension of the model.
num_heads: parallel attention heads.
in_proj_weight, in_proj_bias: input projection weight and bias.
bias_k, bias_v: bias of the key and value sequences to be added at dim=0.
add_zero_attn: add a new batch of zeros to the key and
value sequences at dim=1.
dropout_p: probability of an element to be zeroed.
out_proj_weight, out_proj_bias: the output projection weight and bias.
training: apply dropout if is ``True``.
key_padding_mask: if provided, specified padding elements in the key will
be ignored by the attention. This is an binary mask. When the value is True,
the corresponding value on the attention layer will be filled with -inf.
need_weights: output attn_output_weights.
attn_mask: mask that prevents attention to certain positions. This is an additive mask
(i.e. the values will be added to the attention layer).
use_separate_proj_weight: the function accept the proj. weights for query, key,
and value in differnt forms. If false, in_proj_weight will be used, which is
a combination of q_proj_weight, k_proj_weight, v_proj_weight.
q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias.
static_k, static_v: static key and value used for attention operators.
Shape:
Inputs:
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
the embedding dimension.
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
the embedding dimension.
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
the embedding dimension.
- key_padding_mask: :math:`(N, S)`, ByteTensor, where N is the batch size, S is the source sequence length.
- attn_mask: :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
- static_k: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
- static_v: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
Outputs:
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
E is the embedding dimension.
- attn_output_weights: :math:`(N, L, S)` where N is the batch size,
L is the target sequence length, S is the source sequence length.
"""
tgt_len, bsz, embed_dim = query.size()
assert embed_dim == embed_dim_to_check
assert key.size() == value.size()
head_dim = embed_dim // num_heads
assert head_dim * num_heads == embed_dim, "embed_dim must be divisible by num_heads"
scaling = float(head_dim) ** -0.5
if not use_separate_proj_weight:
if torch.equal(query, key) and torch.equal(key, value):
# self-attention
q, k, v = F.linear(query, in_proj_weight, in_proj_bias).chunk(3, dim=-1)
elif torch.equal(key, value):
# encoder-decoder attention
# This is inline in_proj function with in_proj_weight and in_proj_bias
_b = in_proj_bias
_start = 0
_end = embed_dim
_w = in_proj_weight[_start:_end, :]
if _b is not None:
_b = _b[_start:_end]
q = F.linear(query, _w, _b)
if key is None:
assert value is None
k = None
v = None
else:
# This is inline in_proj function with in_proj_weight and in_proj_bias
_b = in_proj_bias
_start = embed_dim
_end = None
_w = in_proj_weight[_start:, :]
if _b is not None:
_b = _b[_start:]
k, v = F.linear(key, _w, _b).chunk(2, dim=-1)
else:
# This is inline in_proj function with in_proj_weight and in_proj_bias
_b = in_proj_bias
_start = 0
_end = embed_dim
_w = in_proj_weight[_start:_end, :]
if _b is not None:
_b = _b[_start:_end]
q = F.linear(query, _w, _b)
# This is inline in_proj function with in_proj_weight and in_proj_bias
_b = in_proj_bias
_start = embed_dim
_end = embed_dim * 2
_w = in_proj_weight[_start:_end, :]
if _b is not None:
_b = _b[_start:_end]
k = F.linear(key, _w, _b)
# This is inline in_proj function with in_proj_weight and in_proj_bias
_b = in_proj_bias
_start = embed_dim * 2
_end = None
_w = in_proj_weight[_start:, :]
if _b is not None:
_b = _b[_start:]
v = F.linear(value, _w, _b)
else:
q_proj_weight_non_opt = torch.jit._unwrap_optional(q_proj_weight)
len1, len2 = q_proj_weight_non_opt.size()
assert len1 == embed_dim and len2 == query.size(-1)
k_proj_weight_non_opt = torch.jit._unwrap_optional(k_proj_weight)
len1, len2 = k_proj_weight_non_opt.size()
assert len1 == embed_dim and len2 == key.size(-1)
v_proj_weight_non_opt = torch.jit._unwrap_optional(v_proj_weight)
len1, len2 = v_proj_weight_non_opt.size()
assert len1 == embed_dim and len2 == value.size(-1)
if in_proj_bias is not None:
q = F.linear(query, q_proj_weight_non_opt, in_proj_bias[0:embed_dim])
k = F.linear(key, k_proj_weight_non_opt, in_proj_bias[embed_dim:(embed_dim * 2)])
v = F.linear(value, v_proj_weight_non_opt, in_proj_bias[(embed_dim * 2):])
else:
q = F.linear(query, q_proj_weight_non_opt, in_proj_bias)
k = F.linear(key, k_proj_weight_non_opt, in_proj_bias)
v = F.linear(value, v_proj_weight_non_opt, in_proj_bias)
q = q * scaling
if bias_k is not None and bias_v is not None:
if static_k is None and static_v is None:
k = torch.cat([k, bias_k.repeat(1, bsz, 1)])
v = torch.cat([v, bias_v.repeat(1, bsz, 1)])
if attn_mask is not None:
attn_mask = torch.cat([attn_mask,
torch.zeros((attn_mask.size(0), 1),
dtype=attn_mask.dtype,
device=attn_mask.device)], dim=1)
if key_padding_mask is not None:
key_padding_mask = torch.cat(
[key_padding_mask, torch.zeros((key_padding_mask.size(0), 1),
dtype=key_padding_mask.dtype,
device=key_padding_mask.device)], dim=1)
else:
assert static_k is None, "bias cannot be added to static key."
assert static_v is None, "bias cannot be added to static value."
else:
assert bias_k is None
assert bias_v is None
q = q.contiguous().view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
if k is not None:
k = k.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
if v is not None:
v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
if static_k is not None:
assert static_k.size(0) == bsz * num_heads
assert static_k.size(2) == head_dim
k = static_k
if static_v is not None:
assert static_v.size(0) == bsz * num_heads
assert static_v.size(2) == head_dim
v = static_v
src_len = k.size(1)
if key_padding_mask is not None:
assert key_padding_mask.size(0) == bsz
assert key_padding_mask.size(1) == src_len
if add_zero_attn:
src_len += 1
k = torch.cat([k, torch.zeros((k.size(0), 1) + k.size()[2:], dtype=k.dtype, device=k.device)], dim=1)
v = torch.cat([v, torch.zeros((v.size(0), 1) + v.size()[2:], dtype=v.dtype, device=v.device)], dim=1)
if attn_mask is not None:
attn_mask = torch.cat([attn_mask, torch.zeros((attn_mask.size(0), 1),
dtype=attn_mask.dtype,
device=attn_mask.device)], dim=1)
if key_padding_mask is not None:
key_padding_mask = torch.cat(
[key_padding_mask, torch.zeros((key_padding_mask.size(0), 1),
dtype=key_padding_mask.dtype,
device=key_padding_mask.device)], dim=1)
attn_output_weights = bmm(q, k.transpose(1, 2), mask=acc_bitmask)
assert list(attn_output_weights.size()) == [bsz * num_heads, tgt_len, src_len]
if attn_mask is not None:
attn_mask = attn_mask.unsqueeze(0)
attn_output_weights += attn_mask
if key_padding_mask is not None:
attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
attn_output_weights = attn_output_weights.masked_fill(
key_padding_mask.unsqueeze(1).unsqueeze(2),
float('-inf'),
)
attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, src_len)
attn_output_weights = F.softmax(
attn_output_weights, dim=-1)
attn_output_weights = F.dropout(attn_output_weights, p=dropout_p, training=training)
attn_output = bmm(attn_output_weights, v, mask=acc_bitmask)
assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim]
attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
attn_output = F.linear(attn_output, out_proj_weight, out_proj_bias)
if need_weights:
# average attention weights over heads
attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
return attn_output, attn_output_weights.sum(dim=1) / num_heads
else:
return attn_output, None
class MultiheadAttention(nn.modules.activation.MultiheadAttention):
def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None, acc_bitmask=None):
super(MultiheadAttention, self).__init__(embed_dim, num_heads, dropout, bias, add_bias_kv, add_zero_attn, kdim, vdim)
self.acc_bitmask = acc_bitmask
def forward(self, query, key, value, key_padding_mask=None,
need_weights=True, attn_mask=None):
if not self._qkv_same_embed_dim:
return multi_head_attention_forward(
query, key, value, self.embed_dim, self.num_heads,
self.in_proj_weight, self.in_proj_bias,
self.bias_k, self.bias_v, self.add_zero_attn,
self.dropout, self.out_proj.weight, self.out_proj.bias,
training=self.training,
key_padding_mask=key_padding_mask, need_weights=need_weights,
attn_mask=attn_mask, use_separate_proj_weight=True,
q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight,
v_proj_weight=self.v_proj_weight,
acc_bitmask=self.acc_bitmask)
else:
return multi_head_attention_forward(
query, key, value, self.embed_dim, self.num_heads,
self.in_proj_weight, self.in_proj_bias,
self.bias_k, self.bias_v, self.add_zero_attn,
self.dropout, self.out_proj.weight, self.out_proj.bias,
training=self.training,
key_padding_mask=key_padding_mask, need_weights=need_weights,
attn_mask=attn_mask,
acc_bitmask=self.acc_bitmask)
def replace_mah(model, mask = None):
for child_name, child in model.named_children():
if isinstance(child, nn.modules.activation.MultiheadAttention):
add_bias_kv = child.bias_k is not None
device = child.in_proj_weight.device
mah = MultiheadAttention(child.embed_dim, child.num_heads,
dropout=child.dropout, add_bias_kv=add_bias_kv,
add_zero_attn=child.add_zero_attn, kdim=child.kdim,
vdim=child.vdim, acc_bitmask=mask).to(device)
for yparam, xparam in zip(mah.parameters(), child.parameters()):
yparam.data.copy_(xparam.data)
setattr(model, child_name, mah)
else:
replace_mah(child, mask)

116
python/triton/nn/conv.py Normal file
View File

@@ -0,0 +1,116 @@
import triton
import torch.nn as nn
import torch
import torch.nn.functional as F
class _conv2d(torch.autograd.Function):
@staticmethod
def forward(ctx, input, weight, bias,
stride, padding, dilation, groups,
acc_bitmask):
assert dilation == (1, 1)
assert groups == 1
assert bias == None
pad_h, pad_w = padding
stride_h, stride_w = stride
n, c, h, w = input.size()
k, c, r, s = weight.size()
# allocate output
p = (h + 2*padding[0] - r)//stride[0] + 1
q = (w + 2*padding[1] - s)//stride[1] + 1
output = torch.empty((n, k, p, q), dtype=input.dtype, device=input.device)
# padding
if pad_h or pad_w:
input = triton.ops._einsum.pad(input, [pad_w, pad_w, pad_h, pad_h])
# convolution
triton.ops.einsum(f'nc(h*stride_h + r - pad_h)(w*stride_w + s - pad_w),kcrs->nkhw',
input, weight, mask=acc_bitmask,
output=output,
values = {'pad_h': pad_h,
'stride_h': stride_h,
'pad_w': pad_w,
'stride_w': stride_w})
# prepare backprop
ctx.save_for_backward(input, weight)
ctx.stride = stride
ctx.padding = padding
ctx.acc_bitmask = acc_bitmask
# return
return output
@staticmethod
def backward(ctx, dy):
# retrieve contextual information
input, weight = ctx.saved_tensors
stride = ctx.stride
padding = ctx.padding
acc_bitmask = ctx.acc_bitmask
# gradient of the input
dx = None
if ctx.needs_input_grad[0]:
# dy must be padded
n, k, p, q = dy.size()
n, c, h, w = input.size()
k, c, r, s = weight.size()
dypad = triton.ops._einsum.pad(dy, [4, 4, 4, 4])
# have to be careful here
# the gradient of strided conv is a conv over a sparse image
# which can be decomposed as a set of smaller convs
dx = torch.empty_like(input)
for offh in range(stride[0]):
for offw in range(stride[1]):
poffh = (offh + padding[0]) % stride[0]
poffw = (offw + padding[1]) % stride[1]
pad_h = int((padding[0] + (stride[0] - 1)*offh) / stride[0])
pad_w = int((padding[1] + (stride[1] - 1)*offw) / stride[1])
if offh >= r or offw >= s:
dx[:, :, poffh::stride[0], poffw::stride[1]] = 0
else:
triton.ops.einsum(f'nk(h - r + pad_h)(w - s + pad_w),kcrs->nchw',
dypad[:, :, :, :],
weight[:, :, offh::stride[0], offw::stride[1]],
output = dx[:, :, poffh::stride[0], poffw::stride[1]],
mask = acc_bitmask,
values = {'pad_h': pad_h,
'pad_w': pad_w})
# gradient for the weight
dw = None
if ctx.needs_input_grad[1]:
dw = torch.empty_like(weight)
triton.ops.einsum(f'nc(p*{stride[0]}+r-{padding[0]})(q*{stride[1]}+s-{padding[1]}),nkpq->kcrs',
input, dy, output = dw, mask = acc_bitmask)
return dx, dw, None, None, None, None, None, None
conv2d = _conv2d.apply
class Conv2d(nn.Conv2d):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, groups=1,
bias=True, padding_mode='zeros',
acc_bitmask = None):
super(Conv2d, self).__init__(
in_channels, out_channels, kernel_size, stride, padding, dilation,
groups, bias, padding_mode)
self.acc_bitmask = acc_bitmask
def forward(self, input):
#if self.kernel_size[0] == 3:
# return F.conv2d(input, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups)
return conv2d(input, self.weight, self.bias, self.stride,
self.padding, self.dilation, self.groups,
self.acc_bitmask)
def replace_conv2d(model, acc_bitmask = None):
for child_name, child in model.named_children():
if isinstance(child, nn.Conv2d):
conv2d = Conv2d(child.in_channels, child.out_channels, child.kernel_size,
child.stride, child.padding, child.dilation, child.groups,
child.bias, child.padding_mode,
acc_bitmask=acc_bitmask)
for yparam, xparam in zip(conv2d.parameters(), child.parameters()):
yparam.data.copy_(xparam.data)
setattr(model, child_name, conv2d)
else:
replace_conv2d(child, acc_bitmask)

View File

@@ -0,0 +1,13 @@
import torch
import triton
def linear(x, w, bias = None):
print(x.size(), w.size())
m, k = x.size()
k, n = w.size()
out = torch.empty([m, n], device=x.device)
triton.ops.einsum('mk,nk->mn', x, w, bias)
if bias is not None:
out += bias
return out