[Triton-MLIR] Keren/code gen for extract slice and alloc tensor (#692)

Co-authored-by: gzhu <goostavz@outlook.com>
This commit is contained in:
Keren Zhou
2022-09-23 12:38:14 -07:00
committed by GitHub
parent c56f0198dd
commit ecd1bc33df
5 changed files with 134 additions and 58 deletions

View File

@@ -43,7 +43,6 @@ getScratchConfigForCvtLayout(triton::gpu::ConvertLayoutOp op, unsigned &inVec,
return 0;
}
};
// blocked -> blocked
if (srcLayout.isa<BlockedEncodingAttr>() &&
dstLayout.isa<BlockedEncodingAttr>()) {
auto srcBlockedLayout = srcLayout.cast<BlockedEncodingAttr>();
@@ -66,14 +65,6 @@ getScratchConfigForCvtLayout(triton::gpu::ConvertLayoutOp op, unsigned &inVec,
}
paddedRepShape[outOrd[0]] += pad;
}
// blocked -> shared
if (srcLayout.isa<BlockedEncodingAttr>() &&
dstLayout.isa<SharedEncodingAttr>()) {
auto sharedLayout = dstLayout.cast<SharedEncodingAttr>();
for (int v : dstTy.getShape())
paddedRepShape.push_back(v);
}
return paddedRepShape;
}
@@ -140,8 +131,9 @@ private:
auto dstTy = cvtLayout.result().getType().cast<RankedTensorType>();
auto srcEncoding = srcTy.getEncoding();
auto dstEncoding = dstTy.getEncoding();
if (srcEncoding.isa<SharedEncodingAttr>()) {
// only block->block and block->shared is supported now
if (srcEncoding.isa<SharedEncodingAttr>() ||
dstEncoding.isa<SharedEncodingAttr>()) {
// Only blocked -> blocked conversion requires for scratch allocation
return;
}
// ConvertLayoutOp with both input/output non-shared_layout

View File

@@ -333,6 +333,13 @@ public:
PatternBenefit benefit = 1)
: ConvertOpToLLVMPattern<SourceOp>(typeConverter, benefit) {}
explicit ConvertTritonGPUOpToLLVMPattern(LLVMTypeConverter &typeConverter,
const Allocation *allocation,
Value smem,
PatternBenefit benefit = 1)
: ConvertOpToLLVMPattern<SourceOp>(typeConverter, benefit),
allocation(allocation), smem(smem) {}
Value getThreadId(ConversionPatternRewriter &rewriter, Location loc) const {
auto llvmIndexTy = this->getTypeConverter()->getIndexType();
auto cast = rewriter.create<UnrealizedConversionCastOp>(
@@ -585,12 +592,12 @@ public:
return multiDimIdx;
}
template <typename T>
Value getSharedMemoryBase(Location loc, ConversionPatternRewriter &rewriter,
Value smem, const Allocation *allocation,
Operation *op) const {
T value) const {
auto ptrTy = LLVM::LLVMPointerType::get(
this->getTypeConverter()->convertType(rewriter.getIntegerType(8)), 3);
auto bufferId = allocation->getBufferId(op);
this->getTypeConverter()->convertType(rewriter.getI8Type()), 3);
auto bufferId = allocation->getBufferId(value);
assert(bufferId != Allocation::InvalidBufferId && "BufferId not found");
size_t offset = allocation->getOffset(bufferId);
auto llvmIndexTy = this->getTypeConverter()->getIndexType();
@@ -598,6 +605,10 @@ public:
Value base = gep(ptrTy, smem, offVal);
return base;
}
protected:
const Allocation *allocation;
Value smem;
};
// Convert SplatOp or arith::ConstantOp with SplatElementsAttr to a
@@ -1332,6 +1343,65 @@ struct AddPtrOpConversion
}
};
struct AllocTensorOpConversion
: public ConvertTritonGPUOpToLLVMPattern<triton::gpu::AllocTensorOp> {
using ConvertTritonGPUOpToLLVMPattern<
triton::gpu::AllocTensorOp>::ConvertTritonGPUOpToLLVMPattern;
LogicalResult
matchAndRewrite(triton::gpu::AllocTensorOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
Value smemBase = getSharedMemoryBase(loc, rewriter, op.getResult());
auto resultTy = op.getType().dyn_cast<RankedTensorType>();
auto llvmElemTy =
getTypeConverter()->convertType(resultTy.getElementType());
auto elemPtrTy = LLVM::LLVMPointerType::get(llvmElemTy, 3);
Value resultVal =
rewriter.create<LLVM::BitcastOp>(loc, elemPtrTy, smemBase);
rewriter.replaceOp(op, resultVal);
return success();
}
};
struct ExtractSliceOpConversion
: public ConvertTritonGPUOpToLLVMPattern<triton::gpu::ExtractSliceOp> {
using ConvertTritonGPUOpToLLVMPattern<
triton::gpu::ExtractSliceOp>::ConvertTritonGPUOpToLLVMPattern;
LogicalResult
matchAndRewrite(triton::gpu::ExtractSliceOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
auto srcTy = op.src().getType().dyn_cast<RankedTensorType>();
auto srcLayout = srcTy.getEncoding().dyn_cast<SharedEncodingAttr>();
assert(srcLayout && "Unexpected resultLayout in ExtractSliceOpConversion");
// axis > 0 will result in non-contiguous memory access if the result tensor
// is an alias of the source tensor.
auto axis =
op->getAttrOfType<IntegerAttr>("axis").cast<IntegerAttr>().getInt();
assert(axis == 0 && "Only axis=0 is supported for now");
// Example:
// %dst = extract_slice %src, %index {axis = 0}
// src.shape = [11, 2, 3, 4, 1]
// offset = %index * 2 * 3 * 4 * 1
auto dstTy = op.getType().dyn_cast<RankedTensorType>();
auto base = product<int64_t>(dstTy.getShape());
auto baseVal = createIndexAttrConstant(
rewriter, loc, getTypeConverter()->getIndexType(), base);
Value offset = rewriter.create<LLVM::MulOp>(loc, adaptor.index(), baseVal);
auto llvmElemTy = getTypeConverter()->convertType(dstTy.getElementType());
auto elemPtrTy = LLVM::LLVMPointerType::get(llvmElemTy, 3);
Value resultVal =
rewriter.create<LLVM::GEPOp>(loc, elemPtrTy, adaptor.src(), offset);
rewriter.replaceOp(op, resultVal);
return success();
}
};
template <typename SourceOp, typename DestOp>
class BinaryOpConversion : public ConvertTritonGPUOpToLLVMPattern<SourceOp> {
public:
@@ -1379,13 +1449,6 @@ public:
using ConvertTritonGPUOpToLLVMPattern<
triton::gpu::ConvertLayoutOp>::ConvertTritonGPUOpToLLVMPattern;
ConvertLayoutOpConversion(LLVMTypeConverter &converter,
const Allocation *allocation, Value smem,
PatternBenefit benefit)
: ConvertTritonGPUOpToLLVMPattern<triton::gpu::ConvertLayoutOp>(converter,
benefit),
allocation(allocation), smem(smem) {}
LogicalResult
matchAndRewrite(triton::gpu::ConvertLayoutOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
@@ -1399,13 +1462,10 @@ public:
if ((!srcLayout.isa<BlockedEncodingAttr>()) ||
(!dstLayout.isa<BlockedEncodingAttr>())) {
// TODO: not implemented
llvm::errs()
<< "convert_layout except for blocked -> blocked is not implemented";
return failure();
}
auto llvmElemTy = getTypeConverter()->convertType(dstTy.getElementType());
Value smemBase =
getSharedMemoryBase(loc, rewriter, smem, allocation, op.getOperation());
Value smemBase = getSharedMemoryBase(loc, rewriter, op.getOperation());
auto elemPtrTy = LLVM::LLVMPointerType::get(llvmElemTy, 3);
smemBase = bit_cast(elemPtrTy, smemBase);
@@ -1587,9 +1647,6 @@ private:
}
}
}
const Allocation *allocation;
Value smem;
};
/// ====================== dot codegen begin ==========================
@@ -1926,11 +1983,8 @@ struct DotOpConversion : public ConvertTritonGPUOpToLLVMPattern<triton::DotOp> {
NOT_APPLICABLE,
};
explicit DotOpConversion(LLVMTypeConverter &typeConverter,
const Allocation *allocation, Value smem,
PatternBenefit benefit = 1)
: ConvertTritonGPUOpToLLVMPattern(typeConverter, benefit),
allocation(allocation), smem(smem) {}
using ConvertTritonGPUOpToLLVMPattern<
triton::DotOp>::ConvertTritonGPUOpToLLVMPattern;
LogicalResult
matchAndRewrite(triton::DotOp op, OpAdaptor adaptor,
@@ -1995,15 +2049,6 @@ private:
assert(false && "Not implemented yet.");
return failure();
}
Value getSmemAddr(Value value, Location loc,
ConversionPatternRewriter &rewriter) const {
return getSharedMemoryBase(loc, rewriter, smem, allocation,
value.getDefiningOp());
}
const Allocation *allocation;
Value smem;
};
struct DotOpConversionHelper {
@@ -2340,7 +2385,7 @@ DotOpConversion::convertMMA16816(triton::DotOp op, OpAdaptor adapter,
SmallVector<Value> ptrs(numPtrs);
Type smemPtrTy = helper.getShemPtrTy();
auto smemBase = getSmemAddr(tensor, loc, rewriter);
auto smemBase = getSharedMemoryBase(loc, rewriter, tensor);
for (int i = 0; i < numPtrs; i++) {
ptrs[i] = bit_cast(
smemPtrTy, gep(smemBase.getType(), smemBase, ValueRange({offs[i]})));
@@ -2479,10 +2524,12 @@ public:
SmallVector<Type, 4> types(numElementsPerThread,
convertType(type.getElementType()));
return LLVM::LLVMStructType::getLiteral(&getContext(), types);
} else if (auto mma_layout = layout.dyn_cast<MmaEncodingAttr>()) {
return type;
} else if (auto shared_layout = layout.dyn_cast<SharedEncodingAttr>()) {
} else if (auto mma_layout = layout.dyn_cast_or_null<MmaEncodingAttr>()) {
// TODO: Not implemented
return type;
} else if (auto shared_layout =
layout.dyn_cast_or_null<SharedEncodingAttr>()) {
return LLVM::LLVMPointerType::get(convertType(type.getElementType()), 3);
}
return llvm::None;
}
@@ -2493,6 +2540,9 @@ void populateTritonToLLVMPatterns(mlir::LLVMTypeConverter &typeConverter,
AxisInfoAnalysis &axisInfoAnalysis,
const Allocation *allocation, Value smem,
PatternBenefit benefit = 1) {
patterns.add<AddPtrOpConversion>(typeConverter, benefit);
patterns.add<AllocTensorOpConversion>(typeConverter, allocation, smem,
benefit);
patterns.add<ArithConstantSplatOpConversion>(typeConverter, benefit);
patterns.add<BinaryOpConversion<arith::AddIOp, LLVM::AddOp>>(typeConverter,
benefit);
@@ -2503,9 +2553,10 @@ void populateTritonToLLVMPatterns(mlir::LLVMTypeConverter &typeConverter,
patterns.add<BinaryOpConversion<arith::MulFOp, LLVM::FMulOp>>(typeConverter,
benefit);
patterns.add<BroadcastOpConversion>(typeConverter, benefit);
patterns.add<AddPtrOpConversion>(typeConverter, benefit);
patterns.add<ConvertLayoutOpConversion>(typeConverter, allocation, smem,
benefit);
patterns.add<ExtractSliceOpConversion>(typeConverter, allocation, smem,
benefit);
patterns.add<GetProgramIdOpConversion>(typeConverter, benefit);
patterns.add<LoadOpConversion>(typeConverter, axisInfoAnalysis, benefit);
patterns.add<MakeRangeOpConversion>(typeConverter, benefit);

View File

@@ -431,9 +431,10 @@ mlir::LogicalResult ExtractSliceOp::inferReturnTypes(
auto axis = attributes.get("axis").cast<IntegerAttr>().getInt();
if (axis < 0 || axis > srcShape.size())
return failure();
// Since we only extract a slice from a certain index on the axis,
// the dims before the axis can be dropped.
auto dstShape = srcShape.drop_front(axis + 1);
SmallVector<int64_t, 4> dstShape;
for (int i = 0; i < srcShape.size(); i++)
if (i != axis)
dstShape.push_back(srcShape[i]);
auto returnType =
RankedTensorType::get(dstShape, srcType.getElementType(), encoding);
inferredReturnTypes.assign({returnType});

View File

@@ -22,11 +22,9 @@ func @matmul_loop(%lb : index, %ub : index, %step : index, %A : !tt.ptr<f16>, %B
scf.for %iv = %lb to %ub step %step iter_args(%a_ptr = %a_ptr_init, %b_ptr = %b_ptr_init, %prev_c = %c_init) -> (tensor<128x32x!tt.ptr<f16>, #AL>, tensor<32x128x!tt.ptr<f16>, #BL>, tensor<128x128xf32, #C>) {
%a_ = tt.load %a_ptr, %a_mask, %a_other {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<128x32xf16, #AL>
// CHECK: scratch offset = 8192, size = 0
// CHECK-NEXT: offset = 0, size = 8192
// CHECK: offset = 0, size = 8192
%a = triton_gpu.convert_layout %a_ : (tensor<128x32xf16, #AL>) -> tensor<128x32xf16, #A>
%b_ = tt.load %b_ptr, %b_mask, %b_other {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<32x128xf16, #BL>
// CHECK-NEXT: scratch offset = 16384, size = 0
// CHECK-NEXT: offset = 8192, size = 8192
%b = triton_gpu.convert_layout %b_ : (tensor<32x128xf16, #BL>) -> tensor<32x128xf16, #B>
@@ -52,20 +50,16 @@ func @reusable(%A : !tt.ptr<f16>) {
%a_ptr = tt.broadcast %A : (!tt.ptr<f16>) -> tensor<128x32x!tt.ptr<f16>, #AL>
%b_ptr = tt.broadcast %A : (!tt.ptr<f16>) -> tensor<32x128x!tt.ptr<f16>, #AL>
%a1_ = tt.load %a_ptr, %cst1, %cst2 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<128x32xf16, #AL>
// CHECK: scratch offset = 8192, size = 0
// CHECK-NEXT: offset = 0, size = 8192
%a1 = triton_gpu.convert_layout %a1_ : (tensor<128x32xf16, #AL>) -> tensor<128x32xf16, #A>
%a2_ = tt.load %b_ptr, %cst3, %cst4 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<32x128xf16, #AL>
// CHECK-NEXT: scratch offset = 16384, size = 0
// CHECK-NEXT: offset = 8192, size = 8192
%a2 = triton_gpu.convert_layout %a2_ : (tensor<32x128xf16, #AL>) -> tensor<32x128xf16, #A>
%a3_ = tt.load %a_ptr, %cst1, %cst2 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<128x32xf16, #AL>
// CHECK-NEXT: scratch offset = 24576, size = 0
// CHECK-NEXT: offset = 16384, size = 8192
%a3 = triton_gpu.convert_layout %a3_ : (tensor<128x32xf16, #AL>) -> tensor<128x32xf16, #A>
%c = tt.dot %a1, %a2, %c_init {allowTF32 = true} : tensor<128x32xf16, #A> * tensor<32x128xf16, #B> -> tensor<128x128xf32, #C>
%a4_ = tt.load %b_ptr, %cst3, %cst4 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<32x128xf16, #AL>
// CHECK-NEXT: scratch offset = 8192, size = 0
// CHECK-NEXT: offset = 0, size = 8192
%a4 = triton_gpu.convert_layout %a4_ : (tensor<32x128xf16, #AL>) -> tensor<32x128xf16, #A>
%c1 = tt.dot %a3, %a4, %c {allowTF32 = true} : tensor<128x32xf16, #A> * tensor<32x128xf16, #B> -> tensor<128x128xf32, #C>

View File

@@ -293,6 +293,44 @@ module attributes {"triton_gpu.num-warps" = 4 : i32} {
// -----
#shared0 = #triton_gpu.shared<{vec = 2, perPhase = 2, maxPhase = 4, order = [1, 0]}>
module attributes {"triton_gpu.num-warps" = 4 : i32} {
// CHECK: llvm.mlir.global internal @global_smem
// CHECK-LABEL: basic_alloc_tensor
func @basic_alloc_tensor() {
// CHECK: llvm.mlir.addressof @global_smem
// CHECK-NEXT: llvm.mlir.constant
// CHECK-NEXT: llvm.getelementptr
// CHECK-NEXT: llvm.bitcast
%0 = triton_gpu.alloc_tensor : tensor<16x16xf16, #shared0>
return
}
}
// -----
#shared0 = #triton_gpu.shared<{vec = 2, perPhase = 2, maxPhase = 4, order = [1, 0]}>
module attributes {"triton_gpu.num-warps" = 4 : i32} {
// CHECK: llvm.mlir.global internal @global_smem
// CHECK-LABEL: basic_extract_slice
func @basic_extract_slice() {
// CHECK: %[[BASE0:.*]] = llvm.mlir.addressof @global_smem
// CHECK-NEXT: %[[OFFSET0:.*]] = llvm.mlir.constant
// CHECK-NEXT: %[[OFFSET1:.*]] = llvm.mlir.constant
// CHECK-NEXT: llvm.getelementptr %[[BASE0]][%[[OFFSET1]]]
// CHECK-NEXT: %[[BASE1:.*]] = llvm.bitcast
// CHECK-NEXT: %[[OFFSET2:.*]] = llvm.mlir.constant
// CHECK-NEXT: %[[OFFSET3:.*]] = llvm.mul %[[OFFSET0]], %[[OFFSET2]]
// CHECK-NEXT: llvm.getelementptr %[[BASE1]][%[[OFFSET3]]]
%index = arith.constant 1 : i32
%0 = triton_gpu.alloc_tensor : tensor<128x16x32xf32, #shared0>
%1 = triton_gpu.extract_slice %0, %index {axis = 0: i32} : tensor<128x16x32xf32, #shared0> -> tensor<16x32xf32, #shared0>
return
}
}
// -----
#blocked0 = #triton_gpu.blocked<{sizePerThread = [1], threadsPerWarp = [32], warpsPerCTA = [4], order = [0]}>
module attributes {"triton_gpu.num-warps" = 4 : i32} {
// CHECK: basic_splat