Fixed indentation
This commit is contained in:
@@ -49,98 +49,98 @@ TYPES = { 'vector-axpy': {'template':vcl.atidlas.VectorAxpyTemplate,
|
||||
'perf-measure': 'GFLOP/s'} }
|
||||
|
||||
def do_tuning(config_fname, spec_fname, viennacl_root):
|
||||
config = ConfigObj(config_fname, configspec=spec_fname)
|
||||
map_to_list = lambda T: list(map(T[0], T[1] if isinstance(T[1], list) else [T[1]]))
|
||||
for operation in ['vector-axpy', 'matrix-axpy', 'row-wise-reduction', 'matrix-product']:
|
||||
if operation in config:
|
||||
p = config[operation]
|
||||
confdevices = p['devices']
|
||||
devices = utils.DEVICES_PRESETS[confdevices] if confdevices in utils.DEVICES_PRESETS else [utils.all_devices[int(i)] for i in confdevices]
|
||||
precisions = map_to_list((str, p['precision']))
|
||||
datatypes = [DATATYPES[k] for k in precisions]
|
||||
#Iterate through the datatypes and the devices
|
||||
for datatype, device in itertools.product(datatypes, devices):
|
||||
ctx = cl.Context([device])
|
||||
ctx = vcl.backend.Context(ctx)
|
||||
device = ctx.current_device
|
||||
#Check data-type
|
||||
if datatype is vcl.float64 and not device.double_fp_config:
|
||||
sys.stderr.write('Warning : The device ' + device.name + ' does not support double precision! Skipping ...')
|
||||
continue
|
||||
#Helper
|
||||
def execute(statement, other_params, sizes, fname = os.devnull):
|
||||
print('-----')
|
||||
print(' '.join(map(str, ("Now tuning:", datatype.__name__, '-', operation, '-'.join(other_params), '[' + device.name, '(' + device.platform.name + ')] for sizes', sizes))))
|
||||
with open(fname, "w+") as archive:
|
||||
return optimize.genetic(statement, ctx, TYPES[operation]['template'], lambda p: TYPES[operation]['template'](p, *other_params),
|
||||
TYPES[operation]['parameter-names'], lambda t: TYPES[operation]['perf-index']([datatype().itemsize, sizes, t]), TYPES[operation]['perf-measure'], archive)
|
||||
s = map_to_list((int, p['size']))
|
||||
#Vector AXPY
|
||||
if operation=='vector-axpy':
|
||||
x = vcl.Vector(s[0], context=ctx, dtype=datatype)
|
||||
y = vcl.Vector(s[0], context=ctx, dtype=datatype)
|
||||
execute(vcl.ElementProd(vcl.exp(x + y),vcl.cos(x + y)), ())
|
||||
#Matrix AXPY
|
||||
if operation=='matrix-axpy':
|
||||
A = vcl.Matrix(s, context=ctx, dtype=datatype)
|
||||
B = vcl.Matrix(s, context=ctx, dtype=datatype)
|
||||
execute(A+B, ())
|
||||
#Row-wise reduction
|
||||
if operation=='row-wise-reduction':
|
||||
layouts = map_to_list((str,p['layout']))
|
||||
if 'all' in layouts:
|
||||
layouts = ['N', 'T']
|
||||
for A_trans in layouts:
|
||||
A = vcl.Matrix(s if A_trans=='N' else s[::-1], context=ctx, dtype=datatype, layout=vcl.COL_MAJOR)
|
||||
x = vcl.Vector(s[1] if A_trans=='N' else s[0], context=ctx, dtype=datatype)
|
||||
LHS = A if A_trans=='N' else A.T
|
||||
execute(LHS*x, ())
|
||||
#Matrix Product
|
||||
if operation=='matrix-product':
|
||||
layouts = map_to_list((str,p['layout']))
|
||||
if 'all' in layouts:
|
||||
layouts = ['NN', 'NT', 'TN', 'TT']
|
||||
for layout in layouts:
|
||||
def execution_handler(sizes, fname, parameters=None):
|
||||
A_trans = layout[0]
|
||||
B_trans = layout[1]
|
||||
A = vcl.Matrix((sizes[0], sizes[1]) if A_trans=='N' else (sizes[1],sizes[0]), context=ctx, dtype=datatype, layout=vcl.COL_MAJOR);
|
||||
B = vcl.Matrix((sizes[1], sizes[2]) if B_trans=='N' else (sizes[2],sizes[1]), context=ctx, dtype=datatype, layout=vcl.COL_MAJOR);
|
||||
LHS = A if A_trans=='N' else A.T
|
||||
RHS = B if B_trans=='N' else B.T
|
||||
alpha = vcl.HostScalar(1.0, context=ctx, dtype = datatype)
|
||||
beta = vcl.HostScalar(1.0, context=ctx, dtype = datatype)
|
||||
C = vcl.Matrix((sizes[0], sizes[2]), context=ctx, dtype = datatype, layout=vcl.COL_MAJOR)
|
||||
statement = vcl.Statement(vcl.Assign(C,LHS*RHS*alpha + C*beta))
|
||||
if parameters:
|
||||
TemplateType = TYPES[operation]['template']
|
||||
return tools.benchmark(TemplateType(TemplateType.Parameters(*parameters),A_trans,B_trans), statement, device)
|
||||
else:
|
||||
execute(statement,(A_trans, B_trans), sizes, fname)
|
||||
X, Y, profiles = generate_dataset(TYPES[operation]['template'], execution_handler)
|
||||
train_model(X, Y, profiles)
|
||||
config = ConfigObj(config_fname, configspec=spec_fname)
|
||||
map_to_list = lambda T: list(map(T[0], T[1] if isinstance(T[1], list) else [T[1]]))
|
||||
for operation in ['vector-axpy', 'matrix-axpy', 'row-wise-reduction', 'matrix-product']:
|
||||
if operation in config:
|
||||
p = config[operation]
|
||||
confdevices = p['devices']
|
||||
devices = utils.DEVICES_PRESETS[confdevices] if confdevices in utils.DEVICES_PRESETS else [utils.all_devices[int(i)] for i in confdevices]
|
||||
precisions = map_to_list((str, p['precision']))
|
||||
datatypes = [DATATYPES[k] for k in precisions]
|
||||
#Iterate through the datatypes and the devices
|
||||
for datatype, device in itertools.product(datatypes, devices):
|
||||
ctx = cl.Context([device])
|
||||
ctx = vcl.backend.Context(ctx)
|
||||
device = ctx.current_device
|
||||
#Check data-type
|
||||
if datatype is vcl.float64 and not device.double_fp_config:
|
||||
sys.stderr.write('Warning : The device ' + device.name + ' does not support double precision! Skipping ...')
|
||||
continue
|
||||
#Helper
|
||||
def execute(statement, other_params, sizes, fname = os.devnull):
|
||||
print('-----')
|
||||
print(' '.join(map(str, ("Now tuning:", datatype.__name__, '-', operation, '-'.join(other_params), '[' + device.name, '(' + device.platform.name + ')] for sizes', sizes))))
|
||||
with open(fname, "w+") as archive:
|
||||
return optimize.genetic(statement, ctx, TYPES[operation]['template'], lambda p: TYPES[operation]['template'](p, *other_params),
|
||||
TYPES[operation]['parameter-names'], lambda t: TYPES[operation]['perf-index']([datatype().itemsize, sizes, t]), TYPES[operation]['perf-measure'], archive)
|
||||
s = map_to_list((int, p['size']))
|
||||
#Vector AXPY
|
||||
if operation=='vector-axpy':
|
||||
x = vcl.Vector(s[0], context=ctx, dtype=datatype)
|
||||
y = vcl.Vector(s[0], context=ctx, dtype=datatype)
|
||||
execute(vcl.ElementProd(vcl.exp(x + y),vcl.cos(x + y)), ())
|
||||
#Matrix AXPY
|
||||
if operation=='matrix-axpy':
|
||||
A = vcl.Matrix(s, context=ctx, dtype=datatype)
|
||||
B = vcl.Matrix(s, context=ctx, dtype=datatype)
|
||||
execute(A+B, ())
|
||||
#Row-wise reduction
|
||||
if operation=='row-wise-reduction':
|
||||
layouts = map_to_list((str,p['layout']))
|
||||
if 'all' in layouts:
|
||||
layouts = ['N', 'T']
|
||||
for A_trans in layouts:
|
||||
A = vcl.Matrix(s if A_trans=='N' else s[::-1], context=ctx, dtype=datatype, layout=vcl.COL_MAJOR)
|
||||
x = vcl.Vector(s[1] if A_trans=='N' else s[0], context=ctx, dtype=datatype)
|
||||
LHS = A if A_trans=='N' else A.T
|
||||
execute(LHS*x, ())
|
||||
#Matrix Product
|
||||
if operation=='matrix-product':
|
||||
layouts = map_to_list((str,p['layout']))
|
||||
if 'all' in layouts:
|
||||
layouts = ['NN', 'NT', 'TN', 'TT']
|
||||
for layout in layouts:
|
||||
def execution_handler(sizes, fname, parameters=None):
|
||||
A_trans = layout[0]
|
||||
B_trans = layout[1]
|
||||
A = vcl.Matrix((sizes[0], sizes[1]) if A_trans=='N' else (sizes[1],sizes[0]), context=ctx, dtype=datatype, layout=vcl.COL_MAJOR);
|
||||
B = vcl.Matrix((sizes[1], sizes[2]) if B_trans=='N' else (sizes[2],sizes[1]), context=ctx, dtype=datatype, layout=vcl.COL_MAJOR);
|
||||
LHS = A if A_trans=='N' else A.T
|
||||
RHS = B if B_trans=='N' else B.T
|
||||
alpha = vcl.HostScalar(1.0, context=ctx, dtype = datatype)
|
||||
beta = vcl.HostScalar(1.0, context=ctx, dtype = datatype)
|
||||
C = vcl.Matrix((sizes[0], sizes[2]), context=ctx, dtype = datatype, layout=vcl.COL_MAJOR)
|
||||
statement = vcl.Statement(vcl.Assign(C,LHS*RHS*alpha + C*beta))
|
||||
if parameters:
|
||||
TemplateType = TYPES[operation]['template']
|
||||
return tools.benchmark(TemplateType(TemplateType.Parameters(*parameters),A_trans,B_trans), statement, device)
|
||||
else:
|
||||
execute(statement,(A_trans, B_trans), sizes, fname)
|
||||
X, Y, profiles = generate_dataset(TYPES[operation]['template'], execution_handler)
|
||||
train_model(X, Y, profiles)
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser();
|
||||
subparsers = parser.add_subparsers(dest='action')
|
||||
print_devices_parser = subparsers.add_parser('list-devices', help='list the devices available')
|
||||
tune_parser = subparsers.add_parser('tune', help='tune using a specific configuration file')
|
||||
tune_parser.add_argument("--config", default="config.ini", required=False, type=str)
|
||||
tune_parser.add_argument("--viennacl-root", default='', required=False, type=str)
|
||||
args = parser.parse_args()
|
||||
parser = argparse.ArgumentParser();
|
||||
subparsers = parser.add_subparsers(dest='action')
|
||||
print_devices_parser = subparsers.add_parser('list-devices', help='list the devices available')
|
||||
tune_parser = subparsers.add_parser('tune', help='tune using a specific configuration file')
|
||||
tune_parser.add_argument("--config", default="config.ini", required=False, type=str)
|
||||
tune_parser.add_argument("--viennacl-root", default='', required=False, type=str)
|
||||
args = parser.parse_args()
|
||||
|
||||
if(args.action=='list-devices'):
|
||||
print("----------------")
|
||||
print("Devices available:")
|
||||
print("----------------")
|
||||
devices = [d for platform in cl.get_platforms() for d in platform.get_devices()]
|
||||
for (i, d) in enumerate(devices):
|
||||
print('Device', i, ':', utils.DEVICE_TYPE_PREFIX[d.type].upper() + ':', d.name, 'on', d.platform.name)
|
||||
print("----------------")
|
||||
else:
|
||||
print("------")
|
||||
print("Auto-tuning")
|
||||
print("------")
|
||||
do_tuning(args.config, 'config_spec.ini', args.viennacl_root)
|
||||
if(args.action=='list-devices'):
|
||||
print("----------------")
|
||||
print("Devices available:")
|
||||
print("----------------")
|
||||
devices = [d for platform in cl.get_platforms() for d in platform.get_devices()]
|
||||
for (i, d) in enumerate(devices):
|
||||
print('Device', i, ':', utils.DEVICE_TYPE_PREFIX[d.type].upper() + ':', d.name, 'on', d.platform.name)
|
||||
print("----------------")
|
||||
else:
|
||||
print("------")
|
||||
print("Auto-tuning")
|
||||
print("------")
|
||||
do_tuning(args.config, 'config_spec.ini', args.viennacl_root)
|
||||
|
@@ -7,95 +7,95 @@ from sklearn.neighbors.kde import KernelDensity;
|
||||
from pyviennacl.atidlas import FetchingPolicy
|
||||
|
||||
def decode(y):
|
||||
fetch = [FetchingPolicy.FETCH_FROM_LOCAL, FetchingPolicy.FETCH_FROM_GLOBAL_CONTIGUOUS, FetchingPolicy.FETCH_FROM_GLOBAL_STRIDED]
|
||||
y[7] = fetch[y[7]]
|
||||
y[8] = fetch[y[8]]
|
||||
return y
|
||||
fetch = [FetchingPolicy.FETCH_FROM_LOCAL, FetchingPolicy.FETCH_FROM_GLOBAL_CONTIGUOUS, FetchingPolicy.FETCH_FROM_GLOBAL_STRIDED]
|
||||
y[7] = fetch[y[7]]
|
||||
y[8] = fetch[y[8]]
|
||||
return y
|
||||
|
||||
def generate_dataset(TemplateType, execution_handler):
|
||||
I = 0
|
||||
step = 64;
|
||||
max_size = 4000;
|
||||
I = 0
|
||||
step = 64;
|
||||
max_size = 4000;
|
||||
|
||||
#Retrieves the existing data
|
||||
print "Retrieving data..."
|
||||
path = "./data"
|
||||
files = os.listdir(path)
|
||||
X = np.empty((len(files),3))
|
||||
t = np.empty(len(files))
|
||||
profiles = []
|
||||
nonemptyfiles = []
|
||||
for i,fname in enumerate(files):
|
||||
if os.path.getsize(os.path.join(path,fname))>0:
|
||||
nonemptyfiles.append(fname)
|
||||
files = nonemptyfiles
|
||||
#Retrieves the existing data
|
||||
print "Retrieving data..."
|
||||
path = "./data"
|
||||
files = os.listdir(path)
|
||||
X = np.empty((len(files),3))
|
||||
t = np.empty(len(files))
|
||||
profiles = []
|
||||
nonemptyfiles = []
|
||||
for i,fname in enumerate(files):
|
||||
if os.path.getsize(os.path.join(path,fname))>0:
|
||||
nonemptyfiles.append(fname)
|
||||
files = nonemptyfiles
|
||||
|
||||
for i,fname in enumerate(files):
|
||||
MNK = re.search(r"([0-9]+)-([0-9]+)-([0-9]+).csv", fname)
|
||||
fl = open(os.path.join(path,fname),"rb")
|
||||
A = np.loadtxt(fl,delimiter=',')
|
||||
x = np.array([MNK.group(1), MNK.group(2), MNK.group(3)]).astype(float)
|
||||
y = tuple(A[np.argmin(A[:,0]),1:])
|
||||
if y not in profiles:
|
||||
profiles.append(y)
|
||||
idx = profiles.index(y)
|
||||
X[i,:] = x
|
||||
t[i] = idx
|
||||
for i,fname in enumerate(files):
|
||||
MNK = re.search(r"([0-9]+)-([0-9]+)-([0-9]+).csv", fname)
|
||||
fl = open(os.path.join(path,fname),"rb")
|
||||
A = np.loadtxt(fl,delimiter=',')
|
||||
x = np.array([MNK.group(1), MNK.group(2), MNK.group(3)]).astype(float)
|
||||
y = tuple(A[np.argmin(A[:,0]),1:])
|
||||
if y not in profiles:
|
||||
profiles.append(y)
|
||||
idx = profiles.index(y)
|
||||
X[i,:] = x
|
||||
t[i] = idx
|
||||
|
||||
#Generates new data
|
||||
print "Generating new data..."
|
||||
kdes = [KernelDensity(kernel='gaussian', bandwidth=2*step).fit(X[t==i,:]) for i in range(int(max(t))+1)] if files else [];
|
||||
X.resize((len(files)+I, 3), refcheck=False);
|
||||
t.resize(len(files)+I, refcheck=False);
|
||||
#Generates new data
|
||||
print "Generating new data..."
|
||||
kdes = [KernelDensity(kernel='gaussian', bandwidth=2*step).fit(X[t==i,:]) for i in range(int(max(t))+1)] if files else [];
|
||||
X.resize((len(files)+I, 3), refcheck=False);
|
||||
t.resize(len(files)+I, refcheck=False);
|
||||
|
||||
max_square = max_size/step
|
||||
for i in range(I):
|
||||
n_per_label = np.bincount(t[0:i+1].astype(int));
|
||||
Xtuples = [tuple(x) for x in X];
|
||||
r = random.random();
|
||||
while(True):
|
||||
if(len(kdes)==0 or r<=1.0/len(kdes)):
|
||||
x = np.array([step*random.randint(1,40), step*random.randint(1,40), step*random.randint(1,40)]);
|
||||
else:
|
||||
probs = (1.0/n_per_label)
|
||||
distr = np.random.choice(range(n_per_label.size), p = probs/np.sum(probs))
|
||||
x = kdes[distr].sample()[0]
|
||||
x = np.maximum(np.ones(x.shape),(x - step/2).astype(int)/step + 1)*step
|
||||
if tuple(x) not in Xtuples:
|
||||
break;
|
||||
x = x.astype(int)
|
||||
fname = os.path.join(path, `x[0]` +"-"+ `x[1]` +"-"+ `x[2]` +".csv")
|
||||
#Execute auto-tuning procedure
|
||||
execution_handler(x, fname)
|
||||
#Load csv into matrix
|
||||
fl = open(fname,"rb");
|
||||
A = np.loadtxt(fl,delimiter=',');
|
||||
#Update the kernel density estimators
|
||||
y = tuple(A[np.argmin(A[:,0]),1:]);
|
||||
if y not in profiles:
|
||||
profiles.append(y);
|
||||
kdes.append(KernelDensity(kernel='gaussian', bandwidth=2*step));
|
||||
idx = profiles.index(y);
|
||||
#Update data
|
||||
X[len(files)+i,:] = x;
|
||||
t[len(files)+i] = idx;
|
||||
#Update density estimator p(M,N,K | t=idx)
|
||||
kdes[idx].fit(X[t[0:len(files)+i+1]==idx,:]);
|
||||
max_square = max_size/step
|
||||
for i in range(I):
|
||||
n_per_label = np.bincount(t[0:i+1].astype(int));
|
||||
Xtuples = [tuple(x) for x in X];
|
||||
r = random.random();
|
||||
while(True):
|
||||
if(len(kdes)==0 or r<=1.0/len(kdes)):
|
||||
x = np.array([step*random.randint(1,40), step*random.randint(1,40), step*random.randint(1,40)]);
|
||||
else:
|
||||
probs = (1.0/n_per_label)
|
||||
distr = np.random.choice(range(n_per_label.size), p = probs/np.sum(probs))
|
||||
x = kdes[distr].sample()[0]
|
||||
x = np.maximum(np.ones(x.shape),(x - step/2).astype(int)/step + 1)*step
|
||||
if tuple(x) not in Xtuples:
|
||||
break;
|
||||
x = x.astype(int)
|
||||
fname = os.path.join(path, `x[0]` +"-"+ `x[1]` +"-"+ `x[2]` +".csv")
|
||||
#Execute auto-tuning procedure
|
||||
execution_handler(x, fname)
|
||||
#Load csv into matrix
|
||||
fl = open(fname,"rb");
|
||||
A = np.loadtxt(fl,delimiter=',');
|
||||
#Update the kernel density estimators
|
||||
y = tuple(A[np.argmin(A[:,0]),1:]);
|
||||
if y not in profiles:
|
||||
profiles.append(y);
|
||||
kdes.append(KernelDensity(kernel='gaussian', bandwidth=2*step));
|
||||
idx = profiles.index(y);
|
||||
#Update data
|
||||
X[len(files)+i,:] = x;
|
||||
t[len(files)+i] = idx;
|
||||
#Update density estimator p(M,N,K | t=idx)
|
||||
kdes[idx].fit(X[t[0:len(files)+i+1]==idx,:]);
|
||||
|
||||
|
||||
print "Exporting data...";
|
||||
#Shuffle the list of file
|
||||
files = os.listdir(path)
|
||||
X = np.empty((len(files),3))
|
||||
Y = np.zeros((len(files), len(profiles)))
|
||||
for i,fname in enumerate(files):
|
||||
MNK = re.search(r"([0-9]+)-([0-9]+)-([0-9]+).csv", fname)
|
||||
X[i,:] = map(float,[MNK.group(k) for k in range(1,4)])
|
||||
fl = open(os.path.join(path,fname),"rb");
|
||||
A = np.loadtxt(fl,delimiter=',')
|
||||
for j,y in enumerate(profiles):
|
||||
idx = np.where(np.all(A[:,1:]==y,axis=1))[0]
|
||||
T = A[idx[0], 0] if idx.size else execution_handler(map(int,X[i,:]), '', decode(map(int, y)))
|
||||
Y[i,j] = 2*1e-9*X[i,0]*X[i,1]*X[i,2]/T
|
||||
print "Exporting data...";
|
||||
#Shuffle the list of file
|
||||
files = os.listdir(path)
|
||||
X = np.empty((len(files),3))
|
||||
Y = np.zeros((len(files), len(profiles)))
|
||||
for i,fname in enumerate(files):
|
||||
MNK = re.search(r"([0-9]+)-([0-9]+)-([0-9]+).csv", fname)
|
||||
X[i,:] = map(float,[MNK.group(k) for k in range(1,4)])
|
||||
fl = open(os.path.join(path,fname),"rb");
|
||||
A = np.loadtxt(fl,delimiter=',')
|
||||
for j,y in enumerate(profiles):
|
||||
idx = np.where(np.all(A[:,1:]==y,axis=1))[0]
|
||||
T = A[idx[0], 0] if idx.size else execution_handler(map(int,X[i,:]), '', decode(map(int, y)))
|
||||
Y[i,j] = 2*1e-9*X[i,0]*X[i,1]*X[i,2]/T
|
||||
|
||||
return X, Y, profiles
|
||||
return X, Y, profiles
|
||||
|
@@ -15,12 +15,12 @@ from collections import OrderedDict as odict
|
||||
|
||||
|
||||
def closest_divisor(N, x):
|
||||
x_low=x_high=max(1,min(round(x),N))
|
||||
while N % x_low > 0 and x_low>0:
|
||||
x_low = x_low - 1
|
||||
while N % x_high > 0 and x_high < N:
|
||||
x_high = x_high + 1
|
||||
return x_low if x - x_low < x_high - x else x_high
|
||||
x_low=x_high=max(1,min(round(x),N))
|
||||
while N % x_low > 0 and x_low>0:
|
||||
x_low = x_low - 1
|
||||
while N % x_high > 0 and x_high < N:
|
||||
x_high = x_high + 1
|
||||
return x_low if x - x_low < x_high - x else x_high
|
||||
|
||||
def b_gray_to_bin(A='00000000', endian='big'):
|
||||
assert type(endian) is str
|
||||
@@ -33,154 +33,152 @@ def b_gray_to_bin(A='00000000', endian='big'):
|
||||
|
||||
class GeneticOperators(object):
|
||||
|
||||
def __init__(self, device, statement, parameter_names, TemplateType, build_template, out):
|
||||
self.device = device
|
||||
self.statement = statement
|
||||
self.parameter_names = parameter_names
|
||||
self.TemplateType = TemplateType
|
||||
self.ParameterType = TemplateType.Parameters
|
||||
self.build_template = build_template
|
||||
self.cache = {}
|
||||
self.indpb = 0.05
|
||||
self.out = out
|
||||
def __init__(self, device, statement, parameter_names, TemplateType, build_template, out):
|
||||
self.device = device
|
||||
self.statement = statement
|
||||
self.parameter_names = parameter_names
|
||||
self.TemplateType = TemplateType
|
||||
self.ParameterType = TemplateType.Parameters
|
||||
self.build_template = build_template
|
||||
self.cache = {}
|
||||
self.indpb = 0.05
|
||||
self.out = out
|
||||
|
||||
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
|
||||
creator.create("Individual", list, fitness=creator.FitnessMin)
|
||||
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
|
||||
creator.create("Individual", list, fitness=creator.FitnessMin)
|
||||
|
||||
self.toolbox = base.Toolbox()
|
||||
self.toolbox.register("population", self.init)
|
||||
self.toolbox.register("evaluate", self.evaluate)
|
||||
self.toolbox.register("mate", deap_tools.cxTwoPoint)
|
||||
self.toolbox.register("mutate", self.mutate)
|
||||
self.toolbox.register("select", deap_tools.selNSGA2)
|
||||
self.toolbox = base.Toolbox()
|
||||
self.toolbox.register("population", self.init)
|
||||
self.toolbox.register("evaluate", self.evaluate)
|
||||
self.toolbox.register("mate", deap_tools.cxTwoPoint)
|
||||
self.toolbox.register("mutate", self.mutate)
|
||||
self.toolbox.register("select", deap_tools.selNSGA2)
|
||||
|
||||
@staticmethod
|
||||
def decode(s):
|
||||
FetchingPolicy = vcl.atidlas.FetchingPolicy
|
||||
fetch = [FetchingPolicy.FETCH_FROM_LOCAL, FetchingPolicy.FETCH_FROM_GLOBAL_CONTIGUOUS, FetchingPolicy.FETCH_FROM_GLOBAL_STRIDED]
|
||||
fetchA = fetch[s[0]]
|
||||
fetchB = fetch[s[1]]
|
||||
bincode = ''.join(s[2:])
|
||||
decode_element = lambda x:2**int(b_gray_to_bin(x), 2)
|
||||
simd = decode_element(bincode[0:3])
|
||||
ls0 = decode_element(bincode[2:5])
|
||||
ls1 = decode_element(bincode[5:8])
|
||||
kL = decode_element(bincode[8:11])
|
||||
mS = decode_element(bincode[11:14])
|
||||
kS = decode_element(bincode[14:17])
|
||||
nS = decode_element(bincode[17:20])
|
||||
if fetchA==FetchingPolicy.FETCH_FROM_LOCAL or fetchB==FetchingPolicy.FETCH_FROM_LOCAL:
|
||||
lf0 = decode_element(bincode[20:23])
|
||||
lf1 = ls0*ls1/lf0
|
||||
else:
|
||||
lf0, lf1 = 0, 0
|
||||
return [simd, ls0, kL, ls1, mS, kS, nS, fetchA, fetchB, lf0, lf1]
|
||||
@staticmethod
|
||||
def decode(s):
|
||||
FetchingPolicy = vcl.atidlas.FetchingPolicy
|
||||
fetch = [FetchingPolicy.FETCH_FROM_LOCAL, FetchingPolicy.FETCH_FROM_GLOBAL_CONTIGUOUS, FetchingPolicy.FETCH_FROM_GLOBAL_STRIDED]
|
||||
fetchA = fetch[s[0]]
|
||||
fetchB = fetch[s[1]]
|
||||
bincode = ''.join(s[2:])
|
||||
decode_element = lambda x:2**int(b_gray_to_bin(x), 2)
|
||||
simd = decode_element(bincode[0:3])
|
||||
ls0 = decode_element(bincode[2:5])
|
||||
ls1 = decode_element(bincode[5:8])
|
||||
kL = decode_element(bincode[8:11])
|
||||
mS = decode_element(bincode[11:14])
|
||||
kS = decode_element(bincode[14:17])
|
||||
nS = decode_element(bincode[17:20])
|
||||
if fetchA==FetchingPolicy.FETCH_FROM_LOCAL or fetchB==FetchingPolicy.FETCH_FROM_LOCAL:
|
||||
lf0 = decode_element(bincode[20:23])
|
||||
lf1 = ls0*ls1/lf0
|
||||
else:
|
||||
lf0, lf1 = 0, 0
|
||||
return [simd, ls0, kL, ls1, mS, kS, nS, fetchA, fetchB, lf0, lf1]
|
||||
|
||||
def init(self, N):
|
||||
result = []
|
||||
fetchcount = [0, 0, 0]
|
||||
while len(result) < N:
|
||||
while True:
|
||||
fetch = random.randint(0,2)
|
||||
bincode = [fetch, fetch] + [str(random.randint(0,1)) for i in range(23)]
|
||||
parameters = self.decode(bincode)
|
||||
template = self.build_template(self.TemplateType.Parameters(*parameters))
|
||||
registers_usage = template.registers_usage(vcl.atidlas.StatementsTuple(self.statement))/4
|
||||
lmem_usage = template.lmem_usage(vcl.atidlas.StatementsTuple(self.statement))
|
||||
local_size = template.parameters.local_size_0*template.parameters.local_size_1
|
||||
occupancy_record = tools.OccupancyRecord(self.device, local_size, lmem_usage, registers_usage)
|
||||
if not tools.skip(template, self.statement, self.device):
|
||||
fetchcount[fetch] = fetchcount[fetch] + 1
|
||||
if max(fetchcount) - min(fetchcount) <= 1:
|
||||
result.append(creator.Individual(bincode))
|
||||
break
|
||||
else:
|
||||
fetchcount[fetch] = fetchcount[fetch] - 1
|
||||
return result
|
||||
def init(self, N):
|
||||
result = []
|
||||
fetchcount = [0, 0, 0]
|
||||
while len(result) < N:
|
||||
while True:
|
||||
fetch = random.randint(0,2)
|
||||
bincode = [fetch, fetch] + [str(random.randint(0,1)) for i in range(23)]
|
||||
parameters = self.decode(bincode)
|
||||
template = self.build_template(self.TemplateType.Parameters(*parameters))
|
||||
registers_usage = template.registers_usage(vcl.atidlas.StatementsTuple(self.statement))/4
|
||||
lmem_usage = template.lmem_usage(vcl.atidlas.StatementsTuple(self.statement))
|
||||
local_size = template.parameters.local_size_0*template.parameters.local_size_1
|
||||
occupancy_record = tools.OccupancyRecord(self.device, local_size, lmem_usage, registers_usage)
|
||||
if not tools.skip(template, self.statement, self.device):
|
||||
fetchcount[fetch] = fetchcount[fetch] + 1
|
||||
if max(fetchcount) - min(fetchcount) <= 1:
|
||||
result.append(creator.Individual(bincode))
|
||||
break
|
||||
else:
|
||||
fetchcount[fetch] = fetchcount[fetch] - 1
|
||||
return result
|
||||
|
||||
def mutate(self, individual):
|
||||
while True:
|
||||
new_individual = copy.deepcopy(individual)
|
||||
for i in range(len(new_individual)):
|
||||
if i < 2 and random.random() < self.indpb:
|
||||
while new_individual[i] == individual[i]:
|
||||
new_individual[i] = random.randint(0, 2)
|
||||
elif i >= 2 and random.random() < self.indpb:
|
||||
new_individual[i] = '1' if new_individual[i]=='0' else '0'
|
||||
parameters = self.decode(new_individual)
|
||||
template = self.build_template(self.TemplateType.Parameters(*parameters))
|
||||
#print tools.skip(template, self.statement, self.device), parameters
|
||||
if not tools.skip(template, self.statement, self.device):
|
||||
break
|
||||
return new_individual,
|
||||
def mutate(self, individual):
|
||||
while True:
|
||||
new_individual = copy.deepcopy(individual)
|
||||
for i in range(len(new_individual)):
|
||||
if i < 2 and random.random() < self.indpb:
|
||||
while new_individual[i] == individual[i]:
|
||||
new_individual[i] = random.randint(0, 2)
|
||||
elif i >= 2 and random.random() < self.indpb:
|
||||
new_individual[i] = '1' if new_individual[i]=='0' else '0'
|
||||
parameters = self.decode(new_individual)
|
||||
template = self.build_template(self.TemplateType.Parameters(*parameters))
|
||||
#print tools.skip(template, self.statement, self.device), parameters
|
||||
if not tools.skip(template, self.statement, self.device):
|
||||
break
|
||||
return new_individual,
|
||||
|
||||
def evaluate(self, individual):
|
||||
if tuple(individual) not in self.cache:
|
||||
parameters = self.decode(individual)
|
||||
template = self.build_template(self.TemplateType.Parameters(*parameters))
|
||||
try:
|
||||
tt = tools.benchmark(template, self.statement, self.device)
|
||||
self.out.write(','.join([str(tt)]+map(str,map(int,parameters)))+'\n')
|
||||
self.cache[tuple(individual)] = tt
|
||||
except:
|
||||
self.cache[tuple(individual)] = 10
|
||||
return self.cache[tuple(individual)],
|
||||
def evaluate(self, individual):
|
||||
if tuple(individual) not in self.cache:
|
||||
parameters = self.decode(individual)
|
||||
template = self.build_template(self.TemplateType.Parameters(*parameters))
|
||||
try:
|
||||
tt = tools.benchmark(template, self.statement, self.device)
|
||||
self.out.write(','.join([str(tt)]+map(str,map(int,parameters)))+'\n')
|
||||
self.cache[tuple(individual)] = tt
|
||||
except:
|
||||
self.cache[tuple(individual)] = 10
|
||||
return self.cache[tuple(individual)],
|
||||
|
||||
def optimize(self, maxtime, maxgen, compute_perf, perf_metric):
|
||||
hof = deap_tools.HallOfFame(1)
|
||||
# Begin the generational process
|
||||
gen = 0
|
||||
maxtime = time.strptime(maxtime, '%Mm%Ss')
|
||||
maxtime = maxtime.tm_min*60 + maxtime.tm_sec
|
||||
start_time = time.time()
|
||||
def optimize(self, maxtime, maxgen, compute_perf, perf_metric):
|
||||
hof = deap_tools.HallOfFame(1)
|
||||
# Begin the generational process
|
||||
gen = 0
|
||||
maxtime = time.strptime(maxtime, '%Mm%Ss')
|
||||
maxtime = maxtime.tm_min*60 + maxtime.tm_sec
|
||||
start_time = time.time()
|
||||
|
||||
mu = 30
|
||||
cxpb = 0.2
|
||||
mutpb = 0.7
|
||||
mu = 30
|
||||
cxpb = 0.2
|
||||
mutpb = 0.7
|
||||
|
||||
population = self.init(mu)
|
||||
invalid_ind = [ind for ind in population if not ind.fitness.valid]
|
||||
fitnesses = self.toolbox.map(self.evaluate, invalid_ind)
|
||||
for ind, fit in zip(invalid_ind, fitnesses):
|
||||
ind.fitness.values = fit
|
||||
hof.update(population)
|
||||
|
||||
while time.time() - start_time < maxtime:
|
||||
# Vary the population
|
||||
offspring = []
|
||||
for _ in xrange(mu):
|
||||
op_choice = random.random()
|
||||
if op_choice < cxpb: # Apply crossover
|
||||
ind1, ind2 = map(self.toolbox.clone, random.sample(population, 2))
|
||||
ind1, ind2 = self.toolbox.mate(ind1, ind2)
|
||||
del ind1.fitness.values
|
||||
offspring.append(ind1)
|
||||
elif op_choice < cxpb + mutpb: # Apply mutation
|
||||
ind = self.toolbox.clone(random.choice(population))
|
||||
ind, = self.toolbox.mutate(ind)
|
||||
del ind.fitness.values
|
||||
offspring.append(ind)
|
||||
else: # Apply reproduction
|
||||
offspring.append(random.choice(population))
|
||||
|
||||
#~ for x in offspring:
|
||||
#~ print self.decode(x)
|
||||
# Evaluate the individuals with an invalid fitness
|
||||
invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
|
||||
population = self.init(mu)
|
||||
invalid_ind = [ind for ind in population if not ind.fitness.valid]
|
||||
fitnesses = self.toolbox.map(self.evaluate, invalid_ind)
|
||||
for ind, fit in zip(invalid_ind, fitnesses):
|
||||
ind.fitness.values = fit
|
||||
# Update the hall of fame with the generated individuals
|
||||
hof.update(offspring)
|
||||
# Select the next generation population
|
||||
population[:] = self.toolbox.select(population + offspring, mu)
|
||||
#Update
|
||||
gen = gen + 1
|
||||
best_profile = '(%s)'%','.join(map(str,GeneticOperators.decode(hof[0])));
|
||||
best_performance = compute_perf(hof[0].fitness.values[0])
|
||||
sys.stdout.write('Time %d | Best %d %s [ for %s ]\r'%(time.time() - start_time, best_performance, perf_metric, best_profile))
|
||||
sys.stdout.flush()
|
||||
sys.stdout.write('\n')
|
||||
return population
|
||||
hof.update(population)
|
||||
|
||||
while time.time() - start_time < maxtime:
|
||||
# Vary the population
|
||||
offspring = []
|
||||
for _ in xrange(mu):
|
||||
op_choice = random.random()
|
||||
if op_choice < cxpb: # Apply crossover
|
||||
ind1, ind2 = map(self.toolbox.clone, random.sample(population, 2))
|
||||
ind1, ind2 = self.toolbox.mate(ind1, ind2)
|
||||
del ind1.fitness.values
|
||||
offspring.append(ind1)
|
||||
elif op_choice < cxpb + mutpb: # Apply mutation
|
||||
ind = self.toolbox.clone(random.choice(population))
|
||||
ind, = self.toolbox.mutate(ind)
|
||||
del ind.fitness.values
|
||||
offspring.append(ind)
|
||||
else: # Apply reproduction
|
||||
offspring.append(random.choice(population))
|
||||
|
||||
#~ for x in offspring:
|
||||
#~ print self.decode(x)
|
||||
# Evaluate the individuals with an invalid fitness
|
||||
invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
|
||||
fitnesses = self.toolbox.map(self.evaluate, invalid_ind)
|
||||
for ind, fit in zip(invalid_ind, fitnesses):
|
||||
ind.fitness.values = fit
|
||||
# Update the hall of fame with the generated individuals
|
||||
hof.update(offspring)
|
||||
# Select the next generation population
|
||||
population[:] = self.toolbox.select(population + offspring, mu)
|
||||
#Update
|
||||
gen = gen + 1
|
||||
best_profile = '(%s)'%','.join(map(str,GeneticOperators.decode(hof[0])));
|
||||
best_performance = compute_perf(hof[0].fitness.values[0])
|
||||
sys.stdout.write('Time %d | Best %d %s [ for %s ]\r'%(time.time() - start_time, best_performance, perf_metric, best_profile))
|
||||
sys.stdout.flush()
|
||||
sys.stdout.write('\n')
|
||||
return population
|
||||
|
@@ -4,41 +4,41 @@ import numpy as np
|
||||
import scipy as sp
|
||||
|
||||
def train_model(X, Y, profiles):
|
||||
#Preprocessing
|
||||
scaler = preprocessing.StandardScaler().fit(X);
|
||||
X = scaler.transform(X);
|
||||
ref = np.argmax(np.bincount(np.argmax(Y, axis=1))) #most common profile
|
||||
#Preprocessing
|
||||
scaler = preprocessing.StandardScaler().fit(X);
|
||||
X = scaler.transform(X);
|
||||
ref = np.argmax(np.bincount(np.argmax(Y, axis=1))) #most common profile
|
||||
|
||||
print Y
|
||||
print np.bincount(np.argmax(Y, axis=1))
|
||||
#Cross-validation data-sets
|
||||
cut = int(0.5*X.shape[0]+1);
|
||||
XTr = X[0:cut, :];
|
||||
YTr = Y[0:cut, :];
|
||||
XTe = X[cut:,:];
|
||||
YTe = Y[cut:,:];
|
||||
print Y
|
||||
print np.bincount(np.argmax(Y, axis=1))
|
||||
#Cross-validation data-sets
|
||||
cut = int(0.5*X.shape[0]+1);
|
||||
XTr = X[0:cut, :];
|
||||
YTr = Y[0:cut, :];
|
||||
XTe = X[cut:,:];
|
||||
YTe = Y[cut:,:];
|
||||
|
||||
#Train the model
|
||||
print("Training the model...");
|
||||
clf = linear_model.LinearRegression().fit(XTr,YTr);
|
||||
#Train the model
|
||||
print("Training the model...");
|
||||
clf = linear_model.LinearRegression().fit(XTr,YTr);
|
||||
|
||||
#Evaluate the model
|
||||
GFlops = np.empty(XTe.shape[0]);
|
||||
speedups = np.empty(XTe.shape[0]);
|
||||
optspeedups = np.empty(XTe.shape[0]);
|
||||
for i,x in enumerate(XTe):
|
||||
predictions = clf.predict(x);
|
||||
label = np.argmax(predictions);
|
||||
speedups[i] = YTe[i,label]/YTe[i,ref];
|
||||
optspeedups[i] = np.max(YTe[i,:])/YTe[i,ref];
|
||||
GFlops[i] = YTe[i,ref];
|
||||
#Evaluate the model
|
||||
GFlops = np.empty(XTe.shape[0]);
|
||||
speedups = np.empty(XTe.shape[0]);
|
||||
optspeedups = np.empty(XTe.shape[0]);
|
||||
for i,x in enumerate(XTe):
|
||||
predictions = clf.predict(x);
|
||||
label = np.argmax(predictions);
|
||||
speedups[i] = YTe[i,label]/YTe[i,ref];
|
||||
optspeedups[i] = np.max(YTe[i,:])/YTe[i,ref];
|
||||
GFlops[i] = YTe[i,ref];
|
||||
|
||||
np.set_printoptions(precision=2);
|
||||
print("-----------------");
|
||||
print("Average testing speedup : %f (Optimal : %f)"%(sp.stats.gmean(speedups), sp.stats.gmean(optspeedups)));
|
||||
print("Average GFLOP/s : %f (Default %f, Optimal %f)"%(np.mean(np.multiply(GFlops,speedups)), np.mean(GFlops), np.mean(np.multiply(GFlops,optspeedups))));
|
||||
print("Minimum speedup is %f wrt %i GFlops"%(np.min(speedups), GFlops[np.argmin(speedups)]));
|
||||
print("Maximum speedup is %f wrt %i GFlops"%(np.max(speedups), GFlops[np.argmax(speedups)]));
|
||||
print("--------");
|
||||
np.set_printoptions(precision=2);
|
||||
print("-----------------");
|
||||
print("Average testing speedup : %f (Optimal : %f)"%(sp.stats.gmean(speedups), sp.stats.gmean(optspeedups)));
|
||||
print("Average GFLOP/s : %f (Default %f, Optimal %f)"%(np.mean(np.multiply(GFlops,speedups)), np.mean(GFlops), np.mean(np.multiply(GFlops,optspeedups))));
|
||||
print("Minimum speedup is %f wrt %i GFlops"%(np.min(speedups), GFlops[np.argmin(speedups)]));
|
||||
print("Maximum speedup is %f wrt %i GFlops"%(np.max(speedups), GFlops[np.argmax(speedups)]));
|
||||
print("--------");
|
||||
|
||||
print clf
|
||||
print clf
|
||||
|
@@ -49,5 +49,5 @@ from genetic import GeneticOperators
|
||||
#~
|
||||
|
||||
def genetic(statement, context, TemplateType, build_template, parameter_names, compute_perf, perf_metric, out):
|
||||
GA = GeneticOperators(context.devices[0], statement, parameter_names, TemplateType, build_template, out)
|
||||
GA.optimize(maxtime='2m30s', maxgen=1000, compute_perf=compute_perf, perf_metric=perf_metric)
|
||||
GA = GeneticOperators(context.devices[0], statement, parameter_names, TemplateType, build_template, out)
|
||||
GA.optimize(maxtime='2m30s', maxgen=1000, compute_perf=compute_perf, perf_metric=perf_metric)
|
||||
|
@@ -5,134 +5,136 @@ from pyviennacl.atidlas import StatementsTuple
|
||||
|
||||
class PhysicalLimits:
|
||||
def __init__(self, dev):
|
||||
self.compute_capability = pyopencl.characterize.nv_compute_capability(dev)
|
||||
if self.compute_capability[0]==1:
|
||||
if self.compute_capability[1]<=1:
|
||||
self.warps_per_mp = 24
|
||||
self.threads_per_mp = 768
|
||||
self.num_32b_reg_per_mp = 8192
|
||||
self.reg_alloc_unit_size = 256
|
||||
self.compute_capability = pyopencl.characterize.nv_compute_capability(dev)
|
||||
if self.compute_capability[0]==1:
|
||||
if self.compute_capability[1]<=1:
|
||||
self.warps_per_mp = 24
|
||||
self.threads_per_mp = 768
|
||||
self.num_32b_reg_per_mp = 8192
|
||||
self.reg_alloc_unit_size = 256
|
||||
else:
|
||||
self.warps_per_mp = 32
|
||||
self.threads_per_mp = 1024
|
||||
self.num_32b_reg_per_mp = 16384
|
||||
self.reg_alloc_unit_size = 512
|
||||
self.threads_per_warp = 32
|
||||
self.thread_blocks_per_mp = 8
|
||||
self.reg_alloc_granularity = 'block'
|
||||
self.reg_per_thread = 124
|
||||
self.shared_mem_per_mp = 16384
|
||||
self.shared_mem_alloc_unit_size = 512
|
||||
self.warp_alloc_granularity = 2
|
||||
self.max_thread_block_size = 512
|
||||
|
||||
elif self.compute_capability[0]==2:
|
||||
self.threads_per_warp = 32
|
||||
self.warps_per_mp = 48
|
||||
self.threads_per_mp = 1536
|
||||
self.thread_blocks_per_mp = 8
|
||||
self.num_32b_reg_per_mp = 32768
|
||||
self.reg_alloc_unit_size = 64
|
||||
self.reg_alloc_granularity = 'warp'
|
||||
self.reg_per_thread = 63
|
||||
self.shared_mem_per_mp = 49152
|
||||
self.shared_mem_alloc_unit_size = 128
|
||||
self.warp_alloc_granularity = 2
|
||||
self.max_thread_block_size = 1024
|
||||
|
||||
elif self.compute_capability[0]==3:
|
||||
self.threads_per_warp = 32
|
||||
self.warps_per_mp = 64
|
||||
self.threads_per_mp = 2048
|
||||
self.thread_blocks_per_mp = 16
|
||||
self.num_32b_reg_per_mp = 65536
|
||||
self.reg_alloc_unit_size = 256
|
||||
self.reg_alloc_granularity = 'warp'
|
||||
if(self.compute_capability[1]==5):
|
||||
self.reg_per_thread = 255
|
||||
else:
|
||||
self.reg_per_thread = 63
|
||||
self.shared_mem_per_mp = 49152
|
||||
self.shared_mem_alloc_unit_size = 256
|
||||
self.warp_alloc_granularity = 4
|
||||
self.max_thread_block_size = 1024
|
||||
|
||||
else:
|
||||
self.warps_per_mp = 32
|
||||
self.threads_per_mp = 1024
|
||||
self.num_32b_reg_per_mp = 16384
|
||||
self.reg_alloc_unit_size = 512
|
||||
self.threads_per_warp = 32
|
||||
self.thread_blocks_per_mp = 8
|
||||
self.reg_alloc_granularity = 'block'
|
||||
self.reg_per_thread = 124
|
||||
self.shared_mem_per_mp = 16384
|
||||
self.shared_mem_alloc_unit_size = 512
|
||||
self.warp_alloc_granularity = 2
|
||||
self.max_thread_block_size = 512
|
||||
|
||||
elif self.compute_capability[0]==2:
|
||||
self.threads_per_warp = 32
|
||||
self.warps_per_mp = 48
|
||||
self.threads_per_mp = 1536
|
||||
self.thread_blocks_per_mp = 8
|
||||
self.num_32b_reg_per_mp = 32768
|
||||
self.reg_alloc_unit_size = 64
|
||||
self.reg_alloc_granularity = 'warp'
|
||||
self.reg_per_thread = 63
|
||||
self.shared_mem_per_mp = 49152
|
||||
self.shared_mem_alloc_unit_size = 128
|
||||
self.warp_alloc_granularity = 2
|
||||
self.max_thread_block_size = 1024
|
||||
|
||||
elif self.compute_capability[0]==3:
|
||||
self.threads_per_warp = 32
|
||||
self.warps_per_mp = 64
|
||||
self.threads_per_mp = 2048
|
||||
self.thread_blocks_per_mp = 16
|
||||
self.num_32b_reg_per_mp = 65536
|
||||
self.reg_alloc_unit_size = 256
|
||||
self.reg_alloc_granularity = 'warp'
|
||||
if(self.compute_capability[1]==5):
|
||||
self.reg_per_thread = 255
|
||||
else:
|
||||
self.reg_per_thread = 63
|
||||
self.shared_mem_per_mp = 49152
|
||||
self.shared_mem_alloc_unit_size = 256
|
||||
self.warp_alloc_granularity = 4
|
||||
self.max_thread_block_size = 1024
|
||||
|
||||
else:
|
||||
raise Exception('Compute capability not supported!')
|
||||
|
||||
def _int_floor(value, multiple_of=1):
|
||||
"""Round C{value} down to be a C{multiple_of} something."""
|
||||
# Mimicks the Excel "floor" function (for code stolen from occupancy calculator)
|
||||
|
||||
from math import floor
|
||||
return int(floor(value/multiple_of))*multiple_of
|
||||
|
||||
def _int_ceiling(value, multiple_of=1):
|
||||
"""Round C{value} up to be a C{multiple_of} something."""
|
||||
# Mimicks the Excel "floor" function (for code stolen from occupancy calculator)
|
||||
|
||||
from math import ceil
|
||||
return int(ceil(value/multiple_of))*multiple_of
|
||||
raise Exception('Compute capability not supported!')
|
||||
|
||||
class OccupancyRecord:
|
||||
|
||||
def _int_floor(value, multiple_of=1):
|
||||
"""Round C{value} down to be a C{multiple_of} something."""
|
||||
# Mimicks the Excel "floor" function (for code stolen from occupancy calculator)
|
||||
from math import floor
|
||||
return int(floor(value/multiple_of))*multiple_of
|
||||
|
||||
def _int_ceiling(value, multiple_of=1):
|
||||
"""Round C{value} up to be a C{multiple_of} something."""
|
||||
# Mimicks the Excel "floor" function (for code stolen from occupancy calculator)
|
||||
from math import ceil
|
||||
return int(ceil(value/multiple_of))*multiple_of
|
||||
|
||||
def init_nvidia(self, dev, threads, shared_mem, registers):
|
||||
physical_limits = PhysicalLimits(dev)
|
||||
limits = [];
|
||||
allocated_warps = max(1,_int_ceiling(threads/physical_limits.threads_per_warp))
|
||||
max_warps_per_mp = physical_limits.warps_per_mp;
|
||||
limits.append((min(physical_limits.thread_blocks_per_mp, _int_floor(max_warps_per_mp/allocated_warps)), 'warps'))
|
||||
|
||||
if registers>0:
|
||||
if registers > physical_limits.reg_per_thread:
|
||||
limits.append((0, 'registers'))
|
||||
else:
|
||||
allocated_regs = {'warp': allocated_warps,
|
||||
'block': _int_ceiling(_int_ceiling(allocated_warps, physical_limits.warp_alloc_granularity)*registers*physical_limits.threads_per_warp,allocated_warps)}[physical_limits.reg_alloc_granularity]
|
||||
max_reg_per_mp = {'warp': _int_floor(physical_limits.num_32b_reg_per_mp/_int_ceiling(registers*physical_limits.threads_per_warp, physical_limits.reg_alloc_unit_size), physical_limits.warp_alloc_granularity),
|
||||
'block':physical_limits.num_32b_reg_per_mp}[physical_limits.reg_alloc_granularity]
|
||||
limits.append((_int_floor(max_reg_per_mp/allocated_regs), 'registers'))
|
||||
|
||||
if shared_mem>0:
|
||||
allocated_shared_mem = _int_ceiling(shared_mem, physical_limits.shared_mem_alloc_unit_size)
|
||||
max_shared_mem_per_mp = physical_limits.shared_mem_per_mp
|
||||
limits.append((_int_floor(max_shared_mem_per_mp/allocated_shared_mem), 'shared memory'))
|
||||
|
||||
self.limit, self.limited_by = min(limits)
|
||||
self.warps_per_mp = self.limit*allocated_warps
|
||||
self.occupancy = 100*self.warps_per_mp/physical_limits.warps_per_mp
|
||||
|
||||
def __init__(self, dev, threads, shared_mem=0, registers=0):
|
||||
physical_limits = PhysicalLimits(dev)
|
||||
limits = [];
|
||||
allocated_warps = max(1,_int_ceiling(threads/physical_limits.threads_per_warp))
|
||||
max_warps_per_mp = physical_limits.warps_per_mp;
|
||||
limits.append((min(physical_limits.thread_blocks_per_mp, _int_floor(max_warps_per_mp/allocated_warps)), 'warps'))
|
||||
self.init_nvidia(self, dev, threads, shared_mem, registers)
|
||||
|
||||
if registers>0:
|
||||
if registers > physical_limits.reg_per_thread:
|
||||
limits.append((0, 'registers'))
|
||||
else:
|
||||
allocated_regs = {'warp': allocated_warps,
|
||||
'block': _int_ceiling(_int_ceiling(allocated_warps, physical_limits.warp_alloc_granularity)*registers*physical_limits.threads_per_warp,allocated_warps)}[physical_limits.reg_alloc_granularity]
|
||||
max_reg_per_mp = {'warp': _int_floor(physical_limits.num_32b_reg_per_mp/_int_ceiling(registers*physical_limits.threads_per_warp, physical_limits.reg_alloc_unit_size), physical_limits.warp_alloc_granularity),
|
||||
'block':physical_limits.num_32b_reg_per_mp}[physical_limits.reg_alloc_granularity]
|
||||
limits.append((_int_floor(max_reg_per_mp/allocated_regs), 'registers'))
|
||||
|
||||
if shared_mem>0:
|
||||
allocated_shared_mem = _int_ceiling(shared_mem, physical_limits.shared_mem_alloc_unit_size)
|
||||
max_shared_mem_per_mp = physical_limits.shared_mem_per_mp
|
||||
limits.append((_int_floor(max_shared_mem_per_mp/allocated_shared_mem), 'shared memory'))
|
||||
|
||||
self.limit, self.limited_by = min(limits)
|
||||
self.warps_per_mp = self.limit*allocated_warps
|
||||
self.occupancy = 100*self.warps_per_mp/physical_limits.warps_per_mp
|
||||
|
||||
|
||||
def skip(template, statement, device):
|
||||
statements = StatementsTuple(statement)
|
||||
registers_usage = template.registers_usage(statements)/4
|
||||
lmem_usage = template.lmem_usage(statements)
|
||||
local_size = template.parameters.local_size_0*template.parameters.local_size_1
|
||||
occupancy_record = OccupancyRecord(device, local_size, lmem_usage, registers_usage)
|
||||
if template.check(statement) or occupancy_record.occupancy < 15:
|
||||
statements = StatementsTuple(statement)
|
||||
registers_usage = template.registers_usage(statements)/4
|
||||
lmem_usage = template.lmem_usage(statements)
|
||||
local_size = template.parameters.local_size_0*template.parameters.local_size_1
|
||||
occupancy_record = OccupancyRecord(device, local_size, lmem_usage, registers_usage)
|
||||
if template.check(statement) or occupancy_record.occupancy < 15:
|
||||
return True
|
||||
return False
|
||||
return False
|
||||
|
||||
def benchmark(template, statement, device):
|
||||
statements = StatementsTuple(statement)
|
||||
registers_usage = template.registers_usage(statements)/4
|
||||
lmem_usage = template.lmem_usage(statements)
|
||||
local_size = template.parameters.local_size_0*template.parameters.local_size_1
|
||||
occupancy_record = OccupancyRecord(device, local_size, lmem_usage, registers_usage)
|
||||
if occupancy_record.occupancy < 15 :
|
||||
statements = StatementsTuple(statement)
|
||||
registers_usage = template.registers_usage(statements)/4
|
||||
lmem_usage = template.lmem_usage(statements)
|
||||
local_size = template.parameters.local_size_0*template.parameters.local_size_1
|
||||
occupancy_record = OccupancyRecord(device, local_size, lmem_usage, registers_usage)
|
||||
if occupancy_record.occupancy < 15 :
|
||||
raise ValueError("Template has too low occupancy")
|
||||
else:
|
||||
else:
|
||||
#~ try:
|
||||
template.execute(statement, True)
|
||||
statement.result.context.finish_all_queues()
|
||||
N = 0
|
||||
current_time = 0
|
||||
while current_time < 1e-2:
|
||||
time_before = time.time()
|
||||
template.execute(statement,False)
|
||||
statement.result.context.finish_all_queues()
|
||||
current_time += time.time() - time_before
|
||||
N+=1
|
||||
time_before = time.time()
|
||||
template.execute(statement,False)
|
||||
statement.result.context.finish_all_queues()
|
||||
current_time += time.time() - time_before
|
||||
N+=1
|
||||
return current_time/N
|
||||
#~ except:
|
||||
#~ raise ValueError("Invalid template")
|
||||
#~ raise ValueError("Invalid template")
|
||||
|
@@ -28,6 +28,6 @@ DEVICES_PRESETS = {'all': all_devices,
|
||||
|
||||
|
||||
def sanitize_string(string, keep_chars = ['_']):
|
||||
string = string.replace(' ', '_').lower()
|
||||
string = "".join(c for c in string if c.isalnum() or c in keep_chars).rstrip()
|
||||
return string
|
||||
string = string.replace(' ', '_').lower()
|
||||
string = "".join(c for c in string if c.isalnum() or c in keep_chars).rstrip()
|
||||
return string
|
||||
|
@@ -3,114 +3,114 @@ import os
|
||||
import utils
|
||||
|
||||
def append_include(data, path):
|
||||
include_name = '#include "' + path +'"\n'
|
||||
already_included = data.find(include_name)
|
||||
if already_included == -1:
|
||||
insert_index = data.index('\n', data.index('#define')) + 1
|
||||
return data[:insert_index] + '\n' + include_name + data[insert_index:]
|
||||
return data
|
||||
include_name = '#include "' + path +'"\n'
|
||||
already_included = data.find(include_name)
|
||||
if already_included == -1:
|
||||
insert_index = data.index('\n', data.index('#define')) + 1
|
||||
return data[:insert_index] + '\n' + include_name + data[insert_index:]
|
||||
return data
|
||||
|
||||
def generate_viennacl_headers(viennacl_root, device, datatype, operation, additional_parameters, parameters):
|
||||
builtin_database_dir = os.path.join(viennacl_root, "device_specific", "builtin_database")
|
||||
if not os.path.isdir(builtin_database_dir):
|
||||
raise EnvironmentError('ViennaCL root path is incorrect. Cannot access ' + builtin_database_dir + '!\n'
|
||||
'Your version of ViennaCL may be too old and/or corrupted.')
|
||||
builtin_database_dir = os.path.join(viennacl_root, "device_specific", "builtin_database")
|
||||
if not os.path.isdir(builtin_database_dir):
|
||||
raise EnvironmentError('ViennaCL root path is incorrect. Cannot access ' + builtin_database_dir + '!\n'
|
||||
'Your version of ViennaCL may be too old and/or corrupted.')
|
||||
|
||||
function_name_dict = { vcl.float32: 'add_4B',
|
||||
vcl.float64: 'add_8B' }
|
||||
function_name_dict = { vcl.float32: 'add_4B',
|
||||
vcl.float64: 'add_8B' }
|
||||
|
||||
additional_parameters_dict = {'N': "char_to_type<'N'>",
|
||||
'T': "char_to_type<'T'>"}
|
||||
additional_parameters_dict = {'N': "char_to_type<'N'>",
|
||||
'T': "char_to_type<'T'>"}
|
||||
|
||||
#Create the device-specific headers
|
||||
cpp_device_name = utils.sanitize_string(device.name)
|
||||
function_name = function_name_dict[datatype]
|
||||
operation = operation.replace('-','_')
|
||||
#Create the device-specific headers
|
||||
cpp_device_name = utils.sanitize_string(device.name)
|
||||
function_name = function_name_dict[datatype]
|
||||
operation = operation.replace('-','_')
|
||||
|
||||
cpp_class_name = operation + '_template'
|
||||
header_name = cpp_device_name + ".hpp"
|
||||
function_declaration = 'inline void ' + function_name + '(' + ', '.join(['database_type<' + cpp_class_name + '::parameters_type> & db'] + \
|
||||
[additional_parameters_dict[x] for x in additional_parameters]) + ')'
|
||||
cpp_class_name = operation + '_template'
|
||||
header_name = cpp_device_name + ".hpp"
|
||||
function_declaration = 'inline void ' + function_name + '(' + ', '.join(['database_type<' + cpp_class_name + '::parameters_type> & db'] + \
|
||||
[additional_parameters_dict[x] for x in additional_parameters]) + ')'
|
||||
|
||||
device_type_prefix = utils.DEVICE_TYPE_PREFIX[device.type]
|
||||
vendor_prefix = utils.VENDOR_PREFIX[device.vendor_id]
|
||||
architecture_family = vcl.opencl.architecture_family(device.vendor_id, device.name)
|
||||
device_type_prefix = utils.DEVICE_TYPE_PREFIX[device.type]
|
||||
vendor_prefix = utils.VENDOR_PREFIX[device.vendor_id]
|
||||
architecture_family = vcl.opencl.architecture_family(device.vendor_id, device.name)
|
||||
|
||||
header_hierarchy = ["devices", device_type_prefix, vendor_prefix, architecture_family]
|
||||
header_directory = os.path.join(builtin_database_dir, *header_hierarchy)
|
||||
header_path = os.path.join(header_directory, header_name)
|
||||
header_hierarchy = ["devices", device_type_prefix, vendor_prefix, architecture_family]
|
||||
header_directory = os.path.join(builtin_database_dir, *header_hierarchy)
|
||||
header_path = os.path.join(header_directory, header_name)
|
||||
|
||||
if not os.path.exists(header_directory):
|
||||
os.makedirs(header_directory)
|
||||
if not os.path.exists(header_directory):
|
||||
os.makedirs(header_directory)
|
||||
|
||||
if os.path.exists(header_path):
|
||||
with open (header_path, "r") as myfile:
|
||||
data=myfile.read()
|
||||
else:
|
||||
data = ''
|
||||
if os.path.exists(header_path):
|
||||
with open (header_path, "r") as myfile:
|
||||
data=myfile.read()
|
||||
else:
|
||||
data = ''
|
||||
|
||||
if not data:
|
||||
ifndef_suffix = ('_'.join(header_hierarchy) + '_hpp_').upper()
|
||||
data = ('#ifndef VIENNACL_DEVICE_SPECIFIC_BUILTIN_DATABASE_' + ifndef_suffix + '\n'
|
||||
'#define VIENNACL_DEVICE_SPECIFIC_BUILTIN_DATABASE_' + ifndef_suffix + '\n'
|
||||
'\n'
|
||||
'#include "viennacl/device_specific/forwards.h"\n'
|
||||
'#include "viennacl/device_specific/builtin_database/common.hpp"\n'
|
||||
'\n'
|
||||
'namespace viennacl{\n'
|
||||
'namespace device_specific{\n'
|
||||
'namespace builtin_database{\n'
|
||||
'namespace devices{\n'
|
||||
'namespace ' + device_type_prefix + '{\n'
|
||||
'namespace ' + vendor_prefix + '{\n'
|
||||
'namespace ' + architecture_family + '{\n'
|
||||
'namespace ' + cpp_device_name + '{\n'
|
||||
'\n'
|
||||
'}\n'
|
||||
'}\n'
|
||||
'}\n'
|
||||
'}\n'
|
||||
'}\n'
|
||||
'}\n'
|
||||
'}\n'
|
||||
'}\n'
|
||||
'#endif\n'
|
||||
'')
|
||||
if not data:
|
||||
ifndef_suffix = ('_'.join(header_hierarchy) + '_hpp_').upper()
|
||||
data = ('#ifndef VIENNACL_DEVICE_SPECIFIC_BUILTIN_DATABASE_' + ifndef_suffix + '\n'
|
||||
'#define VIENNACL_DEVICE_SPECIFIC_BUILTIN_DATABASE_' + ifndef_suffix + '\n'
|
||||
'\n'
|
||||
'#include "viennacl/device_specific/forwards.h"\n'
|
||||
'#include "viennacl/device_specific/builtin_database/common.hpp"\n'
|
||||
'\n'
|
||||
'namespace viennacl{\n'
|
||||
'namespace device_specific{\n'
|
||||
'namespace builtin_database{\n'
|
||||
'namespace devices{\n'
|
||||
'namespace ' + device_type_prefix + '{\n'
|
||||
'namespace ' + vendor_prefix + '{\n'
|
||||
'namespace ' + architecture_family + '{\n'
|
||||
'namespace ' + cpp_device_name + '{\n'
|
||||
'\n'
|
||||
'}\n'
|
||||
'}\n'
|
||||
'}\n'
|
||||
'}\n'
|
||||
'}\n'
|
||||
'}\n'
|
||||
'}\n'
|
||||
'}\n'
|
||||
'#endif\n'
|
||||
'')
|
||||
|
||||
data = append_include(data, 'viennacl/device_specific/templates/' + cpp_class_name + '.hpp')
|
||||
data = append_include(data, 'viennacl/device_specific/templates/' + cpp_class_name + '.hpp')
|
||||
|
||||
add_to_database_arguments = [vendor_prefix + '_id', utils.DEVICE_TYPE_CL_NAME[device.type], 'ocl::'+architecture_family,
|
||||
'"' + device.name + '"', cpp_class_name + '::parameters' + str(parameters)]
|
||||
core = ' db.' + function_name + '(' + ', '.join(add_to_database_arguments) + ');'
|
||||
add_to_database_arguments = [vendor_prefix + '_id', utils.DEVICE_TYPE_CL_NAME[device.type], 'ocl::'+architecture_family,
|
||||
'"' + device.name + '"', cpp_class_name + '::parameters' + str(parameters)]
|
||||
core = ' db.' + function_name + '(' + ', '.join(add_to_database_arguments) + ');'
|
||||
|
||||
already_declared = data.find(function_declaration)
|
||||
if already_declared==-1:
|
||||
substr = 'namespace ' + cpp_device_name + '{\n'
|
||||
insert_index = data.index(substr) + len(substr)
|
||||
data = data[:insert_index] + '\n' + function_declaration + '\n{\n' + core + '\n}\n' + data[insert_index:]
|
||||
else:
|
||||
i1 = data.find('{', already_declared)
|
||||
if data[i1-1]=='\n':
|
||||
i1 = i1 - 1
|
||||
i2 = data.find('}', already_declared) + 1
|
||||
data = data[:i1] + '\n{\n' + core + '\n}' + data[i2:]
|
||||
already_declared = data.find(function_declaration)
|
||||
if already_declared==-1:
|
||||
substr = 'namespace ' + cpp_device_name + '{\n'
|
||||
insert_index = data.index(substr) + len(substr)
|
||||
data = data[:insert_index] + '\n' + function_declaration + '\n{\n' + core + '\n}\n' + data[insert_index:]
|
||||
else:
|
||||
i1 = data.find('{', already_declared)
|
||||
if data[i1-1]=='\n':
|
||||
i1 = i1 - 1
|
||||
i2 = data.find('}', already_declared) + 1
|
||||
data = data[:i1] + '\n{\n' + core + '\n}' + data[i2:]
|
||||
|
||||
#Write the header file
|
||||
with open(header_path, "w+") as myfile:
|
||||
myfile.write(data)
|
||||
#Write the header file
|
||||
with open(header_path, "w+") as myfile:
|
||||
myfile.write(data)
|
||||
|
||||
#Updates the global ViennaCL headers
|
||||
with open(os.path.join(builtin_database_dir, operation + '.hpp'), 'r+') as operation_header:
|
||||
data = operation_header.read()
|
||||
data = append_include(data, os.path.relpath(header_path, os.path.join(viennacl_root, os.pardir)))
|
||||
#Updates the global ViennaCL headers
|
||||
with open(os.path.join(builtin_database_dir, operation + '.hpp'), 'r+') as operation_header:
|
||||
data = operation_header.read()
|
||||
data = append_include(data, os.path.relpath(header_path, os.path.join(viennacl_root, os.pardir)))
|
||||
|
||||
scope_name = '_'.join(('init', operation) + additional_parameters)
|
||||
scope = data.index(scope_name)
|
||||
function_call = ' ' + '::'.join(header_hierarchy + [cpp_device_name, function_name]) + '(' + ', '.join(['result'] + [additional_parameters_dict[k] + '()' for k in additional_parameters]) + ')'
|
||||
if function_call not in data:
|
||||
insert_index = data.rindex('\n', 0, data.index('return result', scope))
|
||||
data = data[:insert_index] + function_call + ';\n' + data[insert_index:]
|
||||
scope_name = '_'.join(('init', operation) + additional_parameters)
|
||||
scope = data.index(scope_name)
|
||||
function_call = ' ' + '::'.join(header_hierarchy + [cpp_device_name, function_name]) + '(' + ', '.join(['result'] + [additional_parameters_dict[k] + '()' for k in additional_parameters]) + ')'
|
||||
if function_call not in data:
|
||||
insert_index = data.rindex('\n', 0, data.index('return result', scope))
|
||||
data = data[:insert_index] + function_call + ';\n' + data[insert_index:]
|
||||
|
||||
operation_header.seek(0)
|
||||
operation_header.truncate()
|
||||
operation_header.write(data)
|
||||
operation_header.seek(0)
|
||||
operation_header.truncate()
|
||||
operation_header.write(data)
|
||||
|
Reference in New Issue
Block a user