testing a simple shiftnet

This commit is contained in:
Philippe Tillet
2019-07-10 13:33:08 -07:00
parent 3b89bc8463
commit f665c742f9
6 changed files with 261 additions and 31 deletions

View File

@@ -100,7 +100,7 @@ def batch_norm_grad(op, dy, mean, var):
def run_batchnorm():
C, H, W, B = 1, 4, 4, 4
C, H, W, B = 32, 14, 14, 64
np.random.seed(0)
# Placeholders
x = tf.placeholder(tf.float32, shape=[C, H, W, B])
@@ -117,7 +117,8 @@ def run_batchnorm():
sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer())
result = sess.run([y, m, v], feed_dict = {x: hx, g: hg, b: hb})
#print(result[0], result[1], result[2])
print(result[1])
print(np.mean(hx, (1, 2, 3)))
grads = tf.test.compute_gradient([x, g, b], [(C, H, W, B), (C, ), (C, )], y, (C, H, W, B),
extra_feed_dict = {x: hx, g: hg, b: hb})
dx_t, dx_n = grads[0]