[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2022-09-11 00:50:20 +00:00
parent 4588c0bc46
commit f79b7c6f03
163 changed files with 256 additions and 256 deletions

View File

@@ -324,22 +324,22 @@ for different problem sizes.</p>
0 4096.0 9.600000 9.600000
1 8192.0 19.200000 19.200000
2 16384.0 38.400001 38.400001
3 32768.0 76.800002 76.800002
3 32768.0 63.999998 63.999998
4 65536.0 127.999995 127.999995
5 131072.0 219.428568 219.428568
6 262144.0 341.333321 341.333321
6 262144.0 384.000001 384.000001
7 524288.0 472.615390 472.615390
8 1048576.0 614.400016 614.400016
9 2097152.0 722.823517 722.823517
10 4194304.0 780.190482 780.190482
11 8388608.0 812.429770 812.429770
12 16777216.0 833.084721 833.084721
13 33554432.0 842.004273 843.811163
13 33554432.0 842.004273 842.004273
14 67108864.0 847.448255 848.362445
15 134217728.0 849.737435 850.656574
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 46.079 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 42.405 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>

View File

@@ -374,17 +374,17 @@ We will then compare its performance against (1) <code class="code docutils lite
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 512.000001 546.133347 188.321838
1 384.0 614.400016 585.142862 153.600004
0 256.0 512.000001 546.133347 190.511628
1 384.0 585.142862 585.142862 153.600004
2 512.0 655.360017 606.814814 154.566038
3 640.0 682.666684 640.000002 160.000000
4 768.0 722.823517 664.216187 162.754967
.. ... ... ... ...
93 12160.0 812.359066 406.179533 198.936606
94 12288.0 814.111783 415.661740 199.197579
95 12416.0 812.498981 412.149375 198.854847
96 12544.0 812.566838 412.546756 199.111113
97 12672.0 812.633240 412.097543 199.167004
93 12160.0 814.058574 406.179533 198.530610
94 12288.0 814.111783 415.661740 198.895304
95 12416.0 812.498981 411.296057 198.457532
96 12544.0 812.566838 412.971190 198.618504
97 12672.0 812.633240 412.516771 198.679085
[98 rows x 4 columns]
</pre></div>
@@ -397,7 +397,7 @@ We will then compare its performance against (1) <code class="code docutils lite
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 23.840 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 21.462 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>

View File

@@ -568,42 +568,42 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 256.0 2.730667 ... 3.276800 2.978909
0 256.0 2.978909 ... 3.276800 2.978909
1 384.0 7.372800 ... 8.507077 8.507077
2 512.0 14.563555 ... 16.384000 16.384000
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 32.768000 ... 34.028308 34.028308
5 896.0 39.025776 ... 39.025776 39.025776
5 896.0 39.025776 ... 40.140799 39.025776
6 1024.0 51.150050 ... 52.428801 52.428801
7 1152.0 45.242181 ... 46.656000 46.656000
8 1280.0 51.200001 ... 56.888887 56.888887
9 1408.0 64.138541 ... 67.305878 67.305878
10 1536.0 80.430545 ... 79.526831 79.526831
11 1664.0 63.372618 ... 62.492442 62.061463
12 1792.0 72.983276 ... 71.588687 71.588687
13 1920.0 69.120002 ... 70.530615 70.530615
14 2048.0 73.908442 ... 77.314362 76.959706
15 2176.0 83.500614 ... 86.367588 85.269692
16 2304.0 68.251065 ... 76.809875 76.563695
17 2432.0 71.305746 ... 74.719317 83.864074
18 2560.0 77.833728 ... 81.512437 81.108913
19 2688.0 83.552988 ... 89.888756 89.254248
20 2816.0 79.733474 ... 82.135981 83.233226
21 2944.0 81.832567 ... 82.237674 81.899809
22 3072.0 82.661468 ... 88.473602 87.112467
23 3200.0 78.817733 ... 91.822093 94.534716
24 3328.0 83.226931 ... 84.895397 84.397770
25 3456.0 82.099354 ... 86.783176 88.400840
26 3584.0 87.042978 ... 91.470385 97.628001
27 3712.0 85.822459 ... 80.367933 87.437503
28 3840.0 81.859361 ... 85.201850 90.798032
29 3968.0 86.973584 ... 91.198760 83.292790
30 4096.0 93.401342 ... 92.372834 88.243079
8 1280.0 51.200001 ... 56.888887 56.109587
9 1408.0 64.138541 ... 67.305878 66.485074
10 1536.0 80.430545 ... 79.526831 78.643199
11 1664.0 62.929456 ... 62.061463 62.061463
12 1792.0 72.512412 ... 71.588687 71.588687
13 1920.0 69.120002 ... 70.172588 70.172588
14 2048.0 73.908442 ... 76.959706 76.959706
15 2176.0 83.155572 ... 86.367588 85.269692
16 2304.0 68.446623 ... 76.809875 76.563695
17 2432.0 71.305746 ... 74.918570 84.877538
18 2560.0 77.833728 ... 81.310171 81.108913
19 2688.0 83.552988 ... 89.888756 89.464755
20 2816.0 79.733474 ... 83.552120 83.074685
21 2944.0 82.237674 ... 81.564701 79.610276
22 3072.0 82.661468 ... 88.612060 89.310890
23 3200.0 83.989503 ... 95.665176 95.238096
24 3328.0 83.130825 ... 84.200347 83.808259
25 3456.0 82.688790 ... 87.727494 88.400840
26 3584.0 86.958797 ... 97.311031 88.764234
27 3712.0 84.159518 ... 82.287760 85.822459
28 3840.0 84.679936 ... 86.670843 91.511791
29 3968.0 85.810547 ... 91.198760 86.788006
30 4096.0 93.336389 ... 92.372834 88.243079
[31 rows x 5 columns]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 25.378 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 23.071 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>

View File

@@ -194,36 +194,36 @@ to download the full example code</p>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>layer-norm-backward:
N Triton Torch Apex
0 1024.0 311.088617 99.096776 311.088617
1 1536.0 351.085717 133.083026 338.201833
2 2048.0 423.724127 162.217818 327.679984
3 2560.0 461.954908 182.857144 325.079368
4 3072.0 511.999982 191.501303 317.793096
5 3584.0 554.941930 208.271186 309.410081
6 4096.0 568.231237 220.412561 298.796351
7 4608.0 498.162157 231.849059 286.507772
8 5120.0 525.128191 242.845844 283.787523
9 5632.0 538.517949 243.107920 291.310338
10 6144.0 544.118087 248.661056 286.322318
11 6656.0 527.207907 256.000009 286.793541
12 7168.0 507.469040 262.243907 288.160801
13 7680.0 481.253256 260.707203 277.381492
14 8192.0 460.440290 269.141693 286.600589
15 8704.0 416.958106 267.815384 285.377055
16 9216.0 428.651187 272.729961 289.507855
0 1024.0 311.088617 98.698793 299.707322
1 1536.0 351.085717 135.032961 335.127270
2 2048.0 427.408686 160.627450 321.254900
3 2560.0 461.954908 181.775141 328.556154
4 3072.0 519.211251 192.501302 319.168834
5 3584.0 554.941930 208.271186 312.785456
6 4096.0 568.231237 220.412561 300.623865
7 4608.0 500.416301 232.825259 287.251954
8 5120.0 527.381977 241.414550 281.834861
9 5632.0 547.238891 242.671458 288.820505
10 6144.0 550.208948 251.631408 287.438593
11 6656.0 534.260858 256.410903 286.279570
12 7168.0 510.480705 257.919035 282.482768
13 7680.0 482.513091 265.208635 279.272719
14 8192.0 463.698115 267.130429 276.523207
15 8704.0 417.791980 263.424974 279.646592
16 9216.0 428.651187 273.066667 288.751954
17 9728.0 439.683593 280.615388 288.950501
18 10240.0 447.650282 286.767793 290.496460
19 10752.0 430.079980 246.464170 290.267711
20 11264.0 429.104745 245.091565 285.767446
21 11776.0 421.826879 249.227509 288.686414
22 12288.0 420.102570 254.453844 295.207195
23 12800.0 415.135142 253.465340 289.811310
24 13312.0 412.242569 252.559690 290.179836
25 13824.0 404.604870 257.390218 292.571423
26 14336.0 398.222222 254.673567 286.481278
27 14848.0 384.829370 257.293872 289.246765
28 15360.0 374.253788 257.790220 286.656296
29 15872.0 366.982663 262.708969 291.229369
18 10240.0 446.836366 286.767793 289.469963
19 10752.0 432.241202 246.229020 288.644296
20 11264.0 429.786952 242.671458 283.966395
21 11776.0 423.089806 248.351483 287.219500
22 12288.0 418.314886 253.796902 294.323369
23 12800.0 416.260178 253.047766 289.265522
24 13312.0 413.844560 253.965017 291.769875
25 13824.0 403.130022 256.792581 291.543045
26 14336.0 397.302533 255.619613 288.402346
27 14848.0 381.533186 255.816222 287.844912
28 15360.0 371.987899 261.818180 288.450715
29 15872.0 366.276922 261.626369 289.679087
</pre></div>
</div>
<div class="line-block">
@@ -477,7 +477,7 @@ to download the full example code</p>
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 11.312 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 11.205 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>

View File

@@ -174,7 +174,7 @@
<div class="section" id="computation-times">
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline"></a></h1>
<p><strong>12:46.619</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<p><strong>12:38.153</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 85%" />
@@ -183,19 +183,19 @@
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
<td><p>05:25.378</p></td>
<td><p>05:23.071</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
<td><p>03:23.840</p></td>
<td><p>03:21.462</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">Layer Normalization</span></a> (<code class="docutils literal notranslate"><span class="pre">05-layer-norm.py</span></code>)</p></td>
<td><p>02:11.312</p></td>
<td><p>02:11.205</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
<td><p>01:46.079</p></td>
<td><p>01:42.405</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>