[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2022-02-20 00:41:34 +00:00
parent cee16caf2b
commit f8c9307a10
158 changed files with 260 additions and 260 deletions

View File

@@ -323,11 +323,11 @@ for different problem sizes.</p>
size Triton Torch
0 4096.0 9.600000 9.600000
1 8192.0 19.200000 19.200000
2 16384.0 38.400001 38.400001
3 32768.0 76.800002 76.800002
2 16384.0 31.999999 31.999999
3 32768.0 63.999998 76.800002
4 65536.0 127.999995 127.999995
5 131072.0 219.428568 219.428568
6 262144.0 384.000001 384.000001
6 262144.0 341.333321 384.000001
7 524288.0 472.615390 472.615390
8 1048576.0 614.400016 614.400016
9 2097152.0 722.823517 722.823517
@@ -339,7 +339,7 @@ for different problem sizes.</p>
15 134217728.0 849.737435 850.656574
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 41.915 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 46.424 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>

View File

@@ -374,17 +374,17 @@ We will then compare its performance against (1) <code class="code docutils lite
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 512.000001 546.133347 190.511628
0 256.0 512.000001 546.133347 188.321838
1 384.0 614.400016 585.142862 153.600004
2 512.0 655.360017 606.814814 154.566038
2 512.0 655.360017 606.814814 156.038096
3 640.0 682.666684 640.000002 160.000000
4 768.0 722.823517 664.216187 162.754967
.. ... ... ... ...
93 12160.0 814.058574 406.179533 198.631953
94 12288.0 814.111783 415.661740 198.995960
95 12416.0 812.498981 412.149375 198.556711
96 12544.0 812.566838 412.971190 198.815254
97 12672.0 812.633240 412.097543 198.873965
93 12160.0 814.058574 406.179533 199.140227
94 12288.0 814.111783 415.222812 199.399583
95 12416.0 812.498981 412.149375 198.954424
96 12544.0 812.566838 412.971190 199.209928
97 12672.0 812.633240 412.097543 199.264875
[98 rows x 4 columns]
</pre></div>
@@ -397,7 +397,7 @@ We will then compare its performance against (1) <code class="code docutils lite
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 23.388 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 24.515 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>

View File

@@ -581,29 +581,29 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
10 1536.0 80.430545 ... 79.526831 79.526831
11 1664.0 62.929456 ... 62.492442 62.061463
12 1792.0 72.512412 ... 72.512412 71.588687
13 1920.0 69.120002 ... 70.172588 70.172588
13 1920.0 69.467336 ... 70.172588 70.172588
14 2048.0 73.908442 ... 76.608294 76.959706
15 2176.0 83.500614 ... 86.367588 85.632545
16 2304.0 68.643310 ... 76.809875 76.563695
17 2432.0 71.305746 ... 85.134737 84.115159
18 2560.0 77.283019 ... 81.108913 80.908642
15 2176.0 83.500614 ... 86.367588 85.269692
16 2304.0 68.251065 ... 76.563695 76.563695
17 2432.0 71.487187 ... 84.367759 84.367759
18 2560.0 78.019048 ... 81.310171 81.108913
19 2688.0 83.369354 ... 89.888756 89.676257
20 2816.0 83.074685 ... 83.074685 82.446516
21 2944.0 81.967162 ... 81.698415 81.967162
22 3072.0 82.301023 ... 88.750943 87.787755
23 3200.0 82.368085 ... 91.954023 91.822093
24 3328.0 80.798314 ... 84.101981 85.602017
25 3456.0 81.766291 ... 91.511426 91.097818
26 3584.0 84.033077 ... 91.563533 94.548254
27 3712.0 85.528545 ... 86.264806 87.284705
28 3840.0 85.005380 ... 91.701494 85.169042
29 3968.0 92.267631 ... 83.865247 90.724116
30 4096.0 86.426548 ... 87.097813 89.478485
20 2816.0 83.392363 ... 83.074685 82.602666
21 2944.0 81.967162 ... 78.174165 82.921853
22 3072.0 82.540970 ... 88.612060 88.473602
23 3200.0 84.600132 ... 95.665176 95.096582
24 3328.0 83.130825 ... 81.438120 83.808259
25 3456.0 81.849303 ... 90.586029 91.200871
26 3584.0 86.665439 ... 90.459560 94.448944
27 3712.0 85.528545 ... 87.246590 88.758185
28 3840.0 84.940091 ... 91.663490 84.228485
29 3968.0 92.302520 ... 83.921126 90.623049
30 4096.0 87.666706 ... 84.838860 91.491294
[31 rows x 5 columns]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 27.265 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 26.730 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>

View File

@@ -371,7 +371,7 @@ to explore the <cite>triton/language/random</cite> folder!</p>
<dd><p>Nitish Srivastava and Geoffrey Hinton and Alex Krizhevsky and Ilya Sutskever and Ruslan Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, JMLR 2014</p>
</dd>
</dl>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.010 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.011 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-04-low-memory-dropout-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/c9aed78977a4c05741d675a38dde3d7d/04-low-memory-dropout.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">04-low-memory-dropout.py</span></code></a></p>

View File

@@ -195,35 +195,35 @@ to download the full example code</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>layer-norm-backward:
N Triton Torch Apex
0 1024.0 311.088617 98.303995 307.200008
1 1536.0 354.461542 134.540150 344.523365
2 2048.0 423.724127 161.684218 334.367350
3 2560.0 465.454542 181.238943 330.322572
4 3072.0 511.999982 192.501302 320.556515
1 1536.0 351.085717 134.540150 341.333333
2 2048.0 423.724127 161.684218 325.509933
3 2560.0 465.454542 181.238943 326.808501
4 3072.0 515.580429 192.501302 317.793096
5 3584.0 551.384634 208.271186 311.652167
6 4096.0 568.231237 220.412561 298.796351
7 4608.0 500.416301 232.825259 286.507772
8 5120.0 525.128191 242.845844 285.104413
9 5632.0 542.843364 243.545956 290.060087
10 6144.0 544.118087 248.661056 286.879370
11 6656.0 530.710976 256.000009 285.767438
6 4096.0 568.231237 220.412561 295.207204
7 4608.0 500.416301 232.825259 291.031570
8 5120.0 527.381977 242.845844 287.775181
9 5632.0 542.843364 243.545956 289.438969
10 6144.0 544.118087 248.661056 286.322318
11 6656.0 532.479975 256.000009 286.279570
12 7168.0 505.976473 260.654538 286.242939
13 7680.0 481.253256 262.564106 278.850215
14 8192.0 462.607053 267.130429 284.939124
13 7680.0 481.253256 262.564106 279.272719
14 8192.0 463.698115 267.130429 284.526763
15 8704.0 417.791980 267.472468 284.987724
16 9216.0 430.319054 272.394084 288.751954
17 9728.0 438.857162 280.615388 290.027323
17 9728.0 438.857162 280.278512 289.667485
18 10240.0 447.650282 286.433562 290.153487
19 10752.0 428.651173 246.935876 290.922209
20 11264.0 429.786952 245.760001 286.676558
21 11776.0 423.089806 249.667843 288.686414
22 12288.0 420.102570 254.453844 294.617366
23 12800.0 415.135142 253.465340 288.180121
24 13312.0 412.242569 252.759501 289.916513
25 13824.0 406.090579 257.190689 292.056329
19 10752.0 428.651173 247.172406 290.922209
20 11264.0 429.104745 245.760001 286.676558
21 11776.0 423.724129 249.888595 288.981596
22 12288.0 420.102570 254.673582 294.323369
23 12800.0 414.574901 253.674644 288.180121
24 13312.0 412.775186 252.959629 289.916513
25 13824.0 406.090579 257.290415 292.056329
26 14336.0 395.930964 254.485198 286.959121
27 14848.0 386.918555 257.479779 289.481735
28 15360.0 373.117425 257.790220 287.550706
29 15872.0 370.192407 261.806182 289.899545
27 14848.0 386.498925 257.665934 289.481735
28 15360.0 373.495460 257.970599 286.211174
29 15872.0 370.192407 261.626369 290.120338
</pre></div>
</div>
<div class="line-block">
@@ -477,7 +477,7 @@ to download the full example code</p>
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 12.428 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 13.353 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>

View File

@@ -174,7 +174,7 @@
<div class="section" id="computation-times">
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline"></a></h1>
<p><strong>12:45.006</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<p><strong>12:51.033</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 85%" />
@@ -183,23 +183,23 @@
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
<td><p>05:27.265</p></td>
<td><p>05:26.730</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
<td><p>03:23.388</p></td>
<td><p>03:24.515</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">Layer Normalization</span></a> (<code class="docutils literal notranslate"><span class="pre">05-layer-norm.py</span></code>)</p></td>
<td><p>02:12.428</p></td>
<td><p>02:13.353</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
<td><p>01:41.915</p></td>
<td><p>01:46.424</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>
<td><p>00:00.010</p></td>
<td><p>00:00.011</p></td>
<td><p>0.0 MB</p></td>
</tr>
</tbody>