Input-dependent models now activated for all the operations
This commit is contained in:
@@ -8,7 +8,7 @@ from pybrain.supervised.trainers import BackpropTrainer
|
||||
from pybrain.structure import LinearLayer, TanhLayer, SigmoidLayer, SoftmaxLayer, FeedForwardNetwork, BiasUnit
|
||||
from pybrain.tools.neuralnets import NNregression, Trainer
|
||||
|
||||
def train_model(X, Y, profiles):
|
||||
def train_model(X, Y, profiles, metric):
|
||||
#Preprocessing
|
||||
Xmean = np.mean(X, axis=0)
|
||||
Xstd = np.std(X, axis=0)
|
||||
@@ -43,7 +43,7 @@ def train_model(X, Y, profiles):
|
||||
np.set_printoptions(precision=2)
|
||||
print("-----------------")
|
||||
print("Average testing speedup : %f (Optimal : %f)"%(sp.stats.gmean(speedups), sp.stats.gmean(optspeedups)))
|
||||
print("Average GFLOP/s : %f (Default %f, Optimal %f)"%(np.mean(np.multiply(GFlops,speedups)), np.mean(GFlops), np.mean(np.multiply(GFlops,optspeedups))))
|
||||
print("Minimum speedup is %f wrt %i GFlops"%(np.min(speedups), GFlops[np.argmin(speedups)]))
|
||||
print("Maximum speedup is %f wrt %i GFlops for %s"%(np.max(speedups), GFlops[np.argmax(speedups)], X[np.argmax(speedups)]*Xstd+Xmean))
|
||||
print("Average %s: %f (Default %f, Optimal %f)"%(metric, np.mean(np.multiply(GFlops,speedups)), np.mean(GFlops), np.mean(np.multiply(GFlops,optspeedups))))
|
||||
print("Minimum speedup is %f wrt %i %s"%(np.min(speedups), GFlops[np.argmin(speedups)], metric))
|
||||
print("Maximum speedup is %f wrt %i %s"%(np.max(speedups), GFlops[np.argmax(speedups)], metric))
|
||||
print("--------")
|
Reference in New Issue
Block a user