[Triton-MLIR] Replace triton.extract_slice with tensor.extract_slice and support more general tensor slicing (#837)
## Features - Allow taking a block of tensor slice, as long as each dimension is contiguous (unit stride). - Fix some problems in `insert_slice_async`'s semantic. - More general verification for ops that return shared layout encoding. ## Known Limitations - `insert_slice_async` still uses the old semantic. May submit another PR later to support similar semantic like `tensor.extract_slice`. - No encoding verification for `tensor.extract_slice`. - 3d tensor ops are broken. - Strided accesses are not allowed. - May cause a little performance slowdown since we are passing strides as values but not constants (e.g., int). It would be difficult to pass strides as attributes when we have control flows. A block argument is possible to accept tensors with different strides.
This commit is contained in:
@@ -474,7 +474,7 @@ void SharedEncodingAttr::print(AsmPrinter &printer) const {
|
||||
|
||||
ParseResult parseInsertSliceAsyncOp(OpAsmParser &parser,
|
||||
OperationState &result) {
|
||||
SmallVector<OpAsmParser::OperandType, 4> allOperands;
|
||||
SmallVector<OpAsmParser::OperandType, 8> allOperands;
|
||||
Type srcType, dstType;
|
||||
SMLoc allOperandLoc = parser.getCurrentLocation();
|
||||
if (parser.parseOperandList(allOperands) ||
|
||||
@@ -489,14 +489,27 @@ ParseResult parseInsertSliceAsyncOp(OpAsmParser &parser,
|
||||
operandTypes.push_back(dstType); // dst
|
||||
operandTypes.push_back(
|
||||
IntegerType::get(parser.getBuilder().getContext(), 32)); // index
|
||||
if (allOperands.size() >= 4)
|
||||
|
||||
int hasMask = 0, hasOther = 0;
|
||||
if (allOperands.size() >= 4) {
|
||||
operandTypes.push_back(triton::getI1SameShape(srcType)); // mask
|
||||
if (allOperands.size() >= 5)
|
||||
hasMask = 1;
|
||||
}
|
||||
if (allOperands.size() >= 5) {
|
||||
operandTypes.push_back(triton::getPointeeType(srcType)); // other
|
||||
hasOther = 1;
|
||||
}
|
||||
|
||||
if (parser.resolveOperands(allOperands, operandTypes, allOperandLoc,
|
||||
result.operands))
|
||||
return failure();
|
||||
|
||||
// Deduce operand_segment_sizes from the number of the operands.
|
||||
auto operand_segment_sizesAttrName =
|
||||
InsertSliceAsyncOp::operand_segment_sizesAttrName(result.name);
|
||||
result.addAttribute(
|
||||
operand_segment_sizesAttrName,
|
||||
parser.getBuilder().getI32VectorAttr({1, 1, 1, hasMask, hasOther}));
|
||||
return success();
|
||||
}
|
||||
|
||||
@@ -504,39 +517,16 @@ void printInsertSliceAsyncOp(OpAsmPrinter &printer,
|
||||
InsertSliceAsyncOp insertSliceAsyncOp) {
|
||||
printer << " ";
|
||||
printer << insertSliceAsyncOp.getOperation()->getOperands();
|
||||
printer.printOptionalAttrDict(insertSliceAsyncOp->getAttrs(),
|
||||
/*elidedAttrs=*/{});
|
||||
// "operand_segment_sizes" can be deduced, so we don't print it.
|
||||
printer.printOptionalAttrDict(
|
||||
insertSliceAsyncOp->getAttrs(),
|
||||
{insertSliceAsyncOp.operand_segment_sizesAttrName()});
|
||||
printer << " : ";
|
||||
printer.printStrippedAttrOrType(insertSliceAsyncOp.src().getType());
|
||||
printer << " -> ";
|
||||
printer.printStrippedAttrOrType(insertSliceAsyncOp.result().getType());
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// ExtractSliceOp
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
mlir::LogicalResult ExtractSliceOp::inferReturnTypes(
|
||||
::mlir::MLIRContext *context, llvm::Optional<::mlir::Location> location,
|
||||
::mlir::ValueRange operands, mlir::DictionaryAttr attributes,
|
||||
::mlir::RegionRange regions,
|
||||
llvm::SmallVectorImpl<::mlir::Type> &inferredReturnTypes) {
|
||||
auto srcType = operands[0].getType().cast<RankedTensorType>();
|
||||
auto encoding = srcType.getEncoding();
|
||||
auto srcShape = srcType.getShape();
|
||||
auto axis = attributes.get("axis").cast<IntegerAttr>().getInt();
|
||||
if (axis < 0 || (size_t)axis > srcShape.size())
|
||||
return failure();
|
||||
SmallVector<int64_t, 4> dstShape;
|
||||
for (size_t i = 0; i < srcShape.size(); i++)
|
||||
if (i != (size_t)axis)
|
||||
dstShape.push_back(srcShape[i]);
|
||||
auto returnType =
|
||||
RankedTensorType::get(dstShape, srcType.getElementType(), encoding);
|
||||
inferredReturnTypes.assign({returnType});
|
||||
return success();
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// DotOperand Encoding
|
||||
//===----------------------------------------------------------------------===//
|
||||
@@ -631,32 +621,6 @@ void TritonGPUDialect::initialize() {
|
||||
addInterfaces<TritonGPUInferLayoutInterface>();
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Verification
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
static LogicalResult verify(InsertSliceAsyncOp op) {
|
||||
if (!isSharedEncoding(op.getResult())) {
|
||||
return op.emitOpError(
|
||||
"insert_slice_async should return a shared memory tensor");
|
||||
}
|
||||
return success();
|
||||
}
|
||||
|
||||
static LogicalResult verify(ExtractSliceOp op) {
|
||||
if (!isSharedEncoding(op.getResult())) {
|
||||
return op.emitOpError("extract_slice should return a shared memory tensor");
|
||||
}
|
||||
return success();
|
||||
}
|
||||
|
||||
static LogicalResult verify(AllocTensorOp op) {
|
||||
if (!isSharedEncoding(op.getResult())) {
|
||||
return op.emitOpError("alloc_tensor should return a shared memory tensor");
|
||||
}
|
||||
return success();
|
||||
}
|
||||
|
||||
#define GET_OP_CLASSES
|
||||
#include "triton/Dialect/TritonGPU/IR/Ops.cpp.inc"
|
||||
|
||||
|
Reference in New Issue
Block a user