[PYTHON] bugfix in bench_cross_entropy

This commit is contained in:
Philippe Tillet
2021-02-26 02:37:05 -05:00
parent 50ff1aea86
commit ff62f7fffc
2 changed files with 9 additions and 23 deletions

View File

@@ -30,7 +30,7 @@ def bench_op(M, N, dtype, mode, provider):
if mode == 'backward':
y = op(x, idx)
dy = torch.randn_like(y)
ms = triton.testing.do_bench(lambda: y.backward(dy, retain_graph=True))
ms = triton.testing.do_bench(lambda: y.backward(dy, retain_graph=True), grad_to_none=x)
return num_gb / ms * 1e3
if __name__ == '__main__':

View File

@@ -1,24 +1,17 @@
import torch
def sparsify_tensor(x, mask, block):
ret = torch.empty(
(x.size(0), mask.sum(), block, block), dtype=x.dtype, device=x.device
)
ret = torch.empty((x.size(0), mask.sum(), block, block), dtype=x.dtype, device=x.device)
for idx, (h, i, j) in enumerate(zip(*mask.nonzero(as_tuple=True))):
ret[:, idx, :, :] = x[
:, h, i * block : (i + 1) * block, j * block : (j + 1) * block
]
ret[:, idx, :, :] = x[:, h, i * block:(i + 1) * block, j * block:(j + 1) * block]
return ret
def mask_tensor(x, mask, block, value=0):
ret = x.clone()
for h, i, j in zip(*(mask == 0).nonzero(as_tuple=True)):
ret[:, h, i * block : (i + 1) * block, j * block : (j + 1) * block] = value
ret[:, h, i * block:(i + 1) * block, j * block:(j + 1) * block] = value
return ret
def allclose(x, y):
assert x.dtype == y.dtype
diff = abs(x - y)
@@ -28,8 +21,7 @@ def allclose(x, y):
err = torch.max(diff) / torch.max(x_max, y_max)
return err < tol
def do_bench(fn, flops=0, warmup=10, rep=50):
def do_bench(fn, flops=0, warmup=10, rep=50, grad_to_none=None):
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
ret = fn()
@@ -38,17 +30,16 @@ def do_bench(fn, flops=0, warmup=10, rep=50):
torch.cuda.synchronize()
start_event.record()
for i in range(rep):
if grad_to_none is not None:
grad_to_none.grad = None
fn()
end_event.record()
torch.cuda.synchronize()
time_ms = start_event.elapsed_time(end_event) / rep
return time_ms
class Benchmark:
def __init__(
self, x_names, x_vals, y_name, y_vals, y_lines, ylabel, loglog, plot_name, args
):
def __init__(self, x_names, x_vals, y_name, y_vals, y_lines, ylabel, loglog, plot_name, args):
self.x_names = x_names
self.x_vals = x_vals
self.y_name = y_name
@@ -59,7 +50,6 @@ class Benchmark:
self.plot_name = plot_name
self.args = args
class Mark:
def __init__(self, fn, benchmarks):
self.fn = fn
@@ -73,10 +63,7 @@ class Mark:
df = pd.DataFrame(columns=[bench.x_names[0]] + bench.y_lines)
for x in bench.x_vals:
x_args = {x_name: x for x_name in bench.x_names}
row = [
self.fn(**x_args, **{bench.y_name: y}, **bench.args)
for y in bench.y_vals
]
row = [self.fn(**x_args, **{bench.y_name: y}, **bench.args) for y in bench.y_vals]
df.loc[len(df)] = [x] + row
if with_plot and bench.plot_name:
xlabel = " = ".join(bench.x_names)
@@ -93,7 +80,6 @@ class Mark:
for bench in self.benchmarks:
self._run(bench, result_path, with_plot)
def perf_report(benchmarks):
wrapper = lambda fn: Mark(fn, benchmarks)
return wrapper