Commit Graph

79 Commits

Author SHA1 Message Date
Keren Zhou
fd2da4aff6 [BACKEND] Support splat constant on the DotOperandLayout (#1008) 2022-12-22 00:48:46 -08:00
Keren Zhou
b5aafb0dab [FRONTEND] Fix 3d indexing (#1006) 2022-12-21 12:52:32 -08:00
Philippe Tillet
20100a7254 Merge triton-mlir branch - Complete rewrite of the backend from scratch (#1004)
This PR merges the `triton-mlir` branch, in which we have been quietly
rewriting the Triton backend from scratch to increase maintainability,
stability and ultimately performance. Changes to the runtime are
minimal, and this new version aims to remain backward-compatible with
the previous commit. The legacy backend is now officially deprecated,
but can still be accessed via the `legacy-backend` tag.

Co-authored-by: Keren Zhou <kerenzhou@openai.com>
Co-authored-by: Yan Chunwei <yanchunwei@outlook.com>
Co-authored-by: goostavz <109190422+goostavz@users.noreply.github.com>
Co-authored-by: Shintaro Iwasaki <siwasaki@fb.com>
Co-authored-by: Yan Da <dyanab@connect.ust.hk>
Co-authored-by: Jun Yang <yangjunpro@gmail.com>
Co-authored-by: Ian Bearman <ianb@microsoft.com>
Co-authored-by: Jason Ansel <jansel@jansel.net>
Co-authored-by: Qingyi Liu <qingyil@nvidia.com>
Co-authored-by: ben-zhang-609 <110140741+ben-zhang-609@users.noreply.github.com>
Co-authored-by: Chenggang Zhao <lyricz@yeah.net>
Co-authored-by: ben-zhang-609 <benzh609@gmail.com>
Co-authored-by: dongdongl <dongdongl@nvidia.com>
2022-12-21 01:30:50 -08:00
Shintaro Iwasaki
77bc5187b5 Better NVIDIA Pascal GPU Support (#827)
This PR clarifies which features are supported on P100 via its tests,
though Pascal is not officially and fully supported by Triton.

## What this PR does

- Skip unsupported tests on P100.
  - Atomic RMW
- `tl.dot()` (perhaps not all patterns, but basically most `tl.dot()`
tests do not work on P100).
- Add an explicit error if shared memory size >= 64K on P100.
- Otherwise it causes `Invalid CUDA argument` error at
`cuLaunchKernel()`, but this error is not very straightforward to
understand. Instead of this generic CUDA argument error, this PR makes
Triton show an error during codegen when `sm < 70`. This check happens
in C/C++ so won't add an overhead in Triton's Python runtime.
- 3 tests (see below) are currently failing, but these are not marked as
skipped because any codegen update in the future can change the kernel
size of the other tests.
- This change won't affect Triton-MLIR. Hopefully Triton-MLIR's generic
`tl.dot()` implementation would support P100.

Importantly, Triton passed all the other tests on P100. Though this
support is not official, it is great for, for example, PyTorch's
TorchDynamo/Inductor, which can use Triton (without `tl.dot()`) for its
backend (https://github.com/pytorch/torchdynamo/issues/1591).

### Results on P100 (Google Cloud)

```sh
$ pytest test/unit
...
================================================================================== short test summary info ==================================================================================
FAILED test/unit/language/test_core.py::test_reduce2d[argmin-float32-shape99-1] - RuntimeError: Device does not support shared memory of 65536bytes
FAILED test/unit/language/test_core.py::test_reduce2d[argmax-float32-shape113-1] - RuntimeError: Device does not support shared memory of 65536bytes
FAILED test/unit/language/test_core.py::test_permute[float32-shape5-perm5] - RuntimeError: Device does not support shared memory of 67584bytes
================================================================== 3 failed, 3824 passed, 952 skipped in 470.90s (0:07:50) ==================================================================
```

<details><summary> <b>Environment Details (collapsed)</b></summary>
<p>

### VM details (Google Cloud)
https://cloud.google.com/
```
# You need a paid account (free trial does not cover GPUs)
Google Cloud -> New Project -> Compute-Engine -> VM Instance
Machine:
GPU: NVIDIA Tesla P100 x 1
CPU: 2 vCPUs, 7.5GB memory
Boot disk:
  OS: Ubuntu 18.04 LTS
  Disk: 40GB (cannot build Triton on the default 10GB disk)
- When I tried, about $1.2 per hour.
- US instances were full when I tried.  I used Asia or Australia.
- Needed a paid account (GPU is not covered by free trial)
- Needed quota request for any GPU instance (by default, no GPU instance is allowed).  Needed to wait an hour for approval
```

### Reproducer
```sh
## 1. Install CUDA and a driver
# Update the apt key (https://developer.nvidia.com/blog/updating-the-cuda-linux-gpg-repository-key/)
sudo apt-key del 7fa2af80
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-keyring_1.0-1_all.deb
# Download CUDA as instructed
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-ubuntu1804.pin
sudo mv cuda-ubuntu1804.pin /etc/apt/preferences.d/cuda-repository-pin-600
sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pub
sudo add-apt-repository "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/ /"
sudo apt-get update
sudo apt-get -y install cuda
# Are you using P100?
nvidia-smi | grep "Tesla P100"

## 2. Setup the build environment
sudo apt update
sudo apt install -y build-essential wget git libz-dev
wget https://repo.anaconda.com/archive/Anaconda3-2022.05-Linux-x86_64.sh
bash Anaconda3-2022.05-Linux-x86_64.sh -b -p $(pwd)/anaconda3
eval "$($(pwd)/anaconda3/bin/conda shell.bash hook)"
conda create -y --name triton_base
conda activate triton_base
conda install -y cmake setuptools

## 3. Build Triton
git clone https://github.com/openai/triton.git
cd triton/python
pip3 install -e '.[tests]'

## 4. Test
pytest test/unit
```

### Environment
```sh
$ nvidia-smi
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 520.61.05    Driver Version: 520.61.05    CUDA Version: 11.8     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  Tesla P100-PCIE...  On   | 00000000:00:04.0 Off |                    0 |
| N/A   36C    P0    25W / 250W |      0MiB / 16384MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
```

</p></details>
2022-11-03 00:11:52 -07:00
Keren Zhou
3ca667dfa8 [Frontend] Return a scalar if all input args are scalar (#816) 2022-10-28 23:27:06 -07:00
Keren Zhou
bc98aead33 [Backend] Fix for mov.u8 (#766)
Init a potential fix for mov.u8 which is not supported by ptx for now.
Use mov.u16 instead and cast it to u8.
2022-10-12 14:32:27 -07:00
Yu Guo
71b46acc42 [IR] Added special-purpose dequantize instruction (#759)
It is currently necessary for optimal performance in quantized workloads to add a special-purpose instruction in the IR. Backward compatibility with this instruction is *NOT* guaranteed.
2022-10-12 14:14:45 -07:00
Bin Bao
09cc2d454b [FRONTEND] Fix a bool tensor storing problem (#746) 2022-10-10 12:11:50 -07:00
Natalia Gimelshein
d3c925db8a [FRONTEND] properly broadcast scalar where condition (#736) 2022-10-04 12:44:03 -07:00
fdrocha
2b0f877fad [RUNTIME] Support environments with multiple cudalibs (#733) 2022-10-03 18:36:24 +00:00
Natalia Gimelshein
f55960e773 [FRONTEND] fix broadcasting for where (#729)
Fixes #532, all 3 inputs to where have to be broadcast together.
2022-10-01 13:18:47 -07:00
Shintaro Iwasaki
ae59f51c2d [CODEGEN] Fix an inliner to call a function with a phi-node (#727) 2022-09-29 21:36:40 -07:00
Jason Ansel
998fd5f9af [FRONTEND] Make triton.compile work without a cuda context (#708)
This allows compiling in a subprocess. I'm not seeing a ton of speedup from this, but figure it is a good change anyway.
2022-09-24 13:41:47 -07:00
Philippe Tillet
677ddae618 [FRONTEND] Add warmup for triton.jit() (#684)
This revives #671 , removing the static functions that may unnecessarily hold a reference to the grid and the JITFunction object

Co-authored-by: Jason Ansel <jansel@jansel.net>
2022-09-21 19:13:20 +00:00
Philippe Tillet
7dc2a70edb Revert "Add .warmup() for triton.jit()" (#682)
Reverts openai/triton#671

It seems like for some reason this caused out-of-memory errors on some
of our internal workloads. I'm reverting this so that HEAD can be used
in production at OpenAI, and I will work on digging into this issue
asynchronously.
2022-09-20 16:05:14 -07:00
Jason Ansel
93b1adc53b [FRONTEND] Add .warmup() for triton.jit() (#671) 2022-09-18 23:09:34 -07:00
Philippe Tillet
4a77dfb042 [FRONTEND] Complete rewrite of the runtime (#644)
This PR completely rewrites the runtime of Triton to be more lean and
clearly separate the compilation step from the just-in-time caching logic.
This should substantially reduce launch overhead.
2022-09-18 08:51:48 -07:00
Shintaro Iwasaki
c668d6596e [DOCS] Fix spelling (#664)
This PR applies minor spelling fix in comments and string literals to
`master`. It shouldn't hurt anything.
2022-09-16 12:26:40 -07:00
Da Yan
437ced38c2 fp8 <> bf16 conversion (#637)
Co-authored-by: Philippe Tillet <phil@openai.com>
2022-08-30 14:20:12 -07:00
Jason Ansel
027321cdcf [FRONTEND] Make tl.rand() 1-exclusive (#601) 2022-07-24 17:47:23 -07:00
Jason Ansel
e02e56dc63 [FRONTEND] Add missing rfloordiv (#598)
* [FRONTEND] Add missing rfloordiv

* fix tests
2022-07-23 21:54:12 -07:00
Da Yan
f28caddbf8 [FRONTEND] Allow tl.where to select pointers (#595) 2022-07-21 09:54:27 -07:00
Keren Zhou
af85f5fa46 [FRONTEND] Refresh cache when the source code of outlined functions are changed (#590) 2022-07-20 17:34:07 -07:00
daadaada
9b2bc88d11 [BACKEND] Better bf16 support (#588) 2022-07-19 21:22:37 -07:00
Keren Zhou
4912916c11 [FRONTEND] Added support for element-wise function defined in external LLVM bitcode (e.g., libdevice) (#562) 2022-07-13 15:52:21 -07:00
Philippe Tillet
4a399a7e40 [BACKEND] Fix some bugs (atomics, a segfault...) (#577)
This should fix #558 , #573 and #574
2022-07-06 20:03:04 -07:00
Keren Zhou
a74cce375f [FRONTEND] Raise broadcast error (#555) 2022-06-30 17:32:07 -07:00
Philippe Tillet
5b4c8f221e [BACKEND] Compiler improvements (#557)
This PR adds several optimization capabilities in the compiler backend:
- Now using inline PTX for `tl.store`, making it possible to use things like evict_last
- For A100, mma layout can be directly converted to shared memory
- For A100, an additional "transpose" argument in `dot` allows tensors to be loaded once and used both row- and col- major.
- Fixed liveness analysis; this was broken.
- Now can load/store directly mma layout without converting. Useful for when tl.dot accumulator is initialized with DRAM data inside of an inner loop.
- `tl.dot` can now take LHS inputs in registers when it comes from a previous `tl.dot` instruction. Useful for e.g. fused attention.
2022-06-27 11:49:19 -07:00
Keren Zhou
87413bc925 [BACKEND] Fix layout convert for non-contiguous input (#564) 2022-06-25 23:12:03 -07:00
Keren Zhou
b5e728cb14 Add argmin argmax (#552) 2022-06-15 13:55:20 -07:00
Keren Zhou
93209c07e0 [BACKEND][CODEGEN] Fix reduce uint (#547) 2022-06-13 16:43:57 -07:00
Philippe Tillet
58c8889235 [FRONTEND] Fix scanline layout (#548) 2022-06-13 16:21:10 -07:00
Natalia Gimelshein
7094657aa9 [FRONTEND] fix bool conversion of floating types (#545) 2022-06-13 15:52:37 -07:00
TC
f13cbaab9f [FRONTEND] assert that num_warps is a power of 2 (#539) 2022-06-06 11:37:08 -07:00
Philippe Tillet
8876e53206 [BACKEND] Restored reduction bugfixes 2022-06-03 11:38:52 -07:00
Philippe Tillet
a60374a597 Revert "[BACKEND] Various bug fixes; making reductions faster (#533)".
This is a more stable commit that produce bitwise identical code to earlier
versions. Using commits after this one may lead to slightly different numerics
2022-06-03 11:36:06 -07:00
Philippe Tillet
3e7500dfe6 [BACKEND] Various bug fixes; making reductions faster (#533) 2022-05-31 17:14:44 -07:00
Philippe Tillet
c82a206684 [FRONTEND] Better dot error message (#531) 2022-05-26 17:41:09 -07:00
daadaada
205a493b10 [FRONTEND] Fix a bug in atomic_cas (correct cmp to val) & more tests on atomic_cas (#520)
Fix a bug in atomic_cas (correct cmp to val) & more tests on atomic_cas
2022-05-21 09:45:54 -07:00
Jiabao Lei
abea3dc2c6 [FRONTEND] provide device kwargs && fix fstring error for py<3.8 (#515)
Co-authored-by: Philippe Tillet <phil@openai.com>
2022-05-14 16:21:46 -07:00
Philippe Tillet
d35617bea1 [BACKEND][CODEGEN] Faster reduction for scanline layout (#516) 2022-05-14 15:26:13 -07:00
Philippe Tillet
ae2a1ab225 [BACKEND] Alignment pass improvements (#503) 2022-04-25 21:16:00 -07:00
Philippe Tillet
3ca792043f [TEST] Added test for vectorization 2022-04-24 13:50:48 -07:00
Philippe Tillet
bda209002e [BACKEND][CODEGEN] vectorization bugfix (#502) 2022-04-23 13:18:33 -07:00
Philippe Tillet
76bfac9f15 [FRONTEND] Improved constexpr handling (#493) 2022-04-12 00:02:54 -07:00
Philippe Tillet
9f08ecd684 [FRONTEND] Semantic analysis refactor (#491)
Moved dispatch.cc to semantic.py (@ptillet)
Integer signedness analysis was moved from C++ to python (@daadaada)
Cleaner frontend types (@daadaada)
Moved SSA construction to a separate object (@ptillet)


Co-authored-by: Yan Da <dyanab@connect.ust.hk>
2022-04-06 16:13:53 -07:00
Philippe Tillet
2bed6fc850 [LANG] Added support for device functions (#484) 2022-04-03 20:58:16 -07:00
Philippe Tillet
76a9ee50a8 Revert "[FRONTEND] Semantic analysis refactor (#473)" (#483)
This reverts commit 539961072c.
2022-03-24 17:16:50 -07:00
daadaada
539961072c [FRONTEND] Semantic analysis refactor (#473)
Moved dispatch.cc to semantic.py
Integer signedness now moved from C++ to python
Cleaner frontend type

Co-authored-by: Phil Tillet <phil@openai.com>
2022-03-16 21:25:30 -07:00
Philippe Tillet
d4d8eaf6c0 [FRONTEND] improved caching mechanism (#474)
Co-authored-by: Greg Brockman <gdb@gregbrockman.com>
Co-authored-by: Christopher Hesse <christopherhesse@users.noreply.github.com>
2022-03-15 12:20:51 -07:00