`insert_slice_async` is decomposed into `load + insert_slice` in the
backend.
Not sure if V100 perf can match the master branch though in this way.
Maybe the performance can be improved if instructions are arranged in
the following form:
```
%0 = load
%1 = load
%2 = load
...
insert_slice %0
insert_slice %1
insert_slice %2
```
Tested on A100 when manually enabling this decomposition.
Tests on V100 haven't been integrated yet, we can divide the tests into
two phases:
1. Test only load, insert_slice, and insert_slice_async, given TritonGPU
IRs in `test_backend.py`.
2. End to end gemm tests on V100.
We have been seeing the following error message for a while:
> NO target: Unable to find target for this triple (no targets are
registered)
Seems that it's not necessary to setup the target triple at that point,
so we can just take it out to get rid of the error message.
Variable names have been changed to the camel style.
1.Code clean-up to remove superfluous #includes.
2.Fix two python test warnings, in which one relates to ["#"
formats](https://jira.mongodb.org/browse/PYTHON-2343), the other relates
to regular expression string usage.
1. Rewrite code generation of insert_slice_async.
2. Correct the wrong index passed to extract_slice in pipeline.
3. Add a prologue in pipeline to wait for dangling cp.asyncs.
4. Move scf to cf conversion inside TritonGPUToLLVM because we need to
perform membar before scf to cf. It shouldn't be a technical limitation
and could be improved by a more general membar analysis.
5. Use an attribute to memoize the shared memory size and support
dynamic shared memory.
6. Prevent the combine pass to reorder insert_slice and extract_slice
across async_wait
Co-authored-by: Superjomn <yanchunwei@outlook.com>
This PR does the following:
- CUDA utilities (e.g., cuGetInfo) won't be compiled as part of libtriton.so anymore.
- Refactoring driver/llvm.cc to split it between PTX codegen and python.
- By extension this will also deprecate include/external so Triton won't have to live with a copy of some CUDA/Hip headers anymore.
- `triton-translate` becomes a `triton.tools.aot` Python utility that re-uses functions from the triton.compile sub-module.
LLVM Conversion for Dot op.
Due to the lack of `convert_layout`, currently, the dot only supports
the following combination of operands
- `$a` in shared layout
- `$b` in shared layout
- `$c` in MMA layout(but only Splat-like, leaving the generic cases to
`convert_layout`)
This PR focus on `mma.16816` related logic support, leaving the other
cases to the following PR.
Co-authored-by: Philippe Tillet <phil@openai.com>
This deprecates the use of release-build LLVM hosted by the LLVM project, which makes debugging harder for developers.
This PR implements the following solution:
1. Create LLVM release tarballs with assert enabled on our own (using Docker)
2. Host them in our own GitHub repositories
3. Use our LLVM for CI and/or development if `TRITON_USE_ASSERT_ENABLED_LLVM=1` is set.
Add backend support of arith::AddIOp, arith::AddFOp, GetProgramIdOp, GEPOp and bugfix for SplatOp, StoreOp, FuncOp
Co-authored-by: gzhu <gzhu@nvidia.com>