I've been using this locally to find errors without running tests, and now that we're using autopep8, it passes with minimal suppressions. This is also what turned up the issues with the tutorials, which were fixed in #422.
- Fix meta-parameter usage on tutorials.
- Install tutorial dependencies on CI.
- Switch from `requirements-test.txt` to `extras_require` for test dependencies, and also use it for tutorial dependencies.
- Make some performance tests deterministic.
Run:
```
isort ./python
autopep8 -i --ignore E501,E701,E731 $(find ./python/ -name '*.py')
```
with an `.isort.cfg` and then clean up a few warts. This PR should be a no-op; the idea is that this is all boring whitespace changes, and any config file changes will be in a different change to make it easier to review.
- Removed driver module -- accelerator runtime is handled by pytorch
- Added basic support for ROCM based on @micmelesse 's PR -- now can execute empty kernel on AMD devices without any compile-time changes
- Now only using PREFER_SHARED for kernels when the size of shared memory is greater than 49k. Otherwise there can be poor L1 performance for broadcast tensors
- Added docstr for autotune, Config, heuristics
- Added docstr for atomics
- Hiding internal _builder argument used for built-in language primitives
- Re-factor docstr to use common templates between similar functions.
This massively simplifies implementation of `reassociate` and also fixes
a bunch of bug. The pass could still be improved, but can already be used
to generate constant pointer offsets in eg the matmul epilogue
This PR implements a major overhaul of the frontend for Triton, and replaces Triton-C by a pure Python API in which kernels are defined as @triton.jit decorated functions. The documentation and tutorials have also been updated to accommodate these changes.
See documentations for more information on the new API
This PR adds an automatic memory alignment mechanism in the Triton runtime. Specifically, the JIT compiler detects the alignment (in bytes) of each pointer argument as well as the largest power of two divisor (between 1 and 16) of each integer argument. Proper .aligned and .multipleof attributes are then added to the Triton-IR on-the-fly for all auto-tunable kernels. There is a cache that remembers all the kernels compiled for each possible configuration.
This PR also includes substantial cleaning of the Python API. This adds 2-3us overhead, mostly due to accessing integer #defines from the auto-tuned compilation options. The previous solution was slightly faster but hacky and potentially unsafe, so this is preferred for now.