Commit Graph

33 Commits

Author SHA1 Message Date
Jokeren
d8d6b9f3f1 Fix v100 fp32 2022-12-12 15:52:16 -08:00
Yan Chunwei
0cfe909df8 [Triton-MLIR][BACKEND] some code clean on the backend (#978) 2022-12-12 09:46:16 +00:00
Philippe Tillet
52accd4c2b [BACKEND] Add isRow attribute for DotOp tensors whose parent is mmav1 (#970)
Co-authored-by: Yan Chunwei <yanchunwei@outlook.com>
2022-12-11 19:01:57 -08:00
Keren Zhou
be2f70699c [BACKEND][FRONTEND] Fix problems with test_matmul (#973)
1. Handle induction variable when step is negative
2. Restore async_wait that accidentally deleted
3. Add missing induction variable in prefetch
4. Add device property functions

Co-authored-by: Philippe Tillet <Phil.Tillet@gmail.com>
2022-12-10 20:34:58 -08:00
Yan Chunwei
24fd953f9a [BACKEND] Refine v100 tests and fix mmav1 numwarps>1 hang issue (#971)
This PR

- Fix numWarps>1 hang issue
- add existing test cases in test_gemm.py to CI, and add a common flag
`valid_on_Volta` to determine whether the test case should be activated
on Volta or just skip.
  - Currently, the column-major cases are disabled.
 - Add test_core.py and other tests to Volta CI
   - the `test_printf.py` failed.
2022-12-09 07:41:22 -08:00
Philippe Tillet
532e10cf87 [FRONTEND][BACKEND] Clean-up transpositions (#953) 2022-12-06 09:32:13 -08:00
Yan Chunwei
e419781978 [Triton-MLIR][BACKEND] Make mmav1 works on basic cases (#944)
TODO:

- Add more cases
- Currently, we just set vec to 4 to make the basic cases pass

Issue:

- the vec in shared layout is different compared to master branch
- when vec=1, it encounters CUDA misalignment error, it doesn't work in
master branch as well
- when setting vec to the value identical to master branch, the MMA
works
2022-12-06 10:57:08 +08:00
Philippe Tillet
8edfe813a5 [FRONTEND][BACKEND] Added trans instruction; made flash attention bwd pass work (#943) 2022-12-03 09:58:24 -08:00
Keren Zhou
c280ebda1b [Triton-MLIR][BACKEND] Fix the membar pass to add missing barriers caused by scf.for (#933)
1. Add missing barriers and revert the previous temporary solution
2. Extract the `run` method from membar analysis because the membar
analysis should have two phases, including construction, which doesn't
modify any IR, and modification, which adds barrier IRs. Hope this could
make the use of membar clear.
2022-12-01 11:54:18 -08:00
Philippe Tillet
6461254fb5 [BACKEND] Make flash attention forward pass work (#928)
This also simplifies BroadcastOp codegen
2022-11-30 10:13:24 +00:00
ben-zhang-609
b688f7b7b8 [Triton-MLIR] add_volta_warpsPerTile (#907) 2022-11-24 01:44:29 +00:00
ben-zhang-609
07786dc932 [Triton-MLIR] Add compute capability (#902)
add compute capability from python frontend to backend.

Co-authored-by: Keren Zhou <kerenzhou@openai.com>
2022-11-22 11:08:23 -08:00
Keren Zhou
6c5f646f4e [WIP][Triton-MLIR] Prefetch pass fixup (#873)
A (potential) problem by directly adopting `tensor.extract_slice`.

Long story short, `tensor.extract_slice` is not aware of swizzling.
Consider the following shared memory tensor and its first three slices,
where each slice includes two tile (the loading unit of LDGSTS) of
elements. Currently, the tiles haven't been swizzled yet, so slicing
seems to work.

<img width="1219" alt="image"
src="https://user-images.githubusercontent.com/2306281/201833023-a7950705-2d50-4c0a-8527-7505261c3a3c.png">

However, now consider the following figure, which is the layout after
applying swizzling on the first figure.

<img width="1244" alt="image"
src="https://user-images.githubusercontent.com/2306281/201834824-7daae360-f5bc-4e6b-a921-20be3f294b78.png">

Note that on phase 2, all tiles have been swizzled out of their
originally slices. This implies that if we use the tile index after
slicing, we can no longer locate the correct tiles. For example, T3 was
in slice 1 but got swapped to slice 0 after swizzling.

Here's a more detailed explanation. In the current `triton-mlir` branch,
we only compute the relative offset of each tile. So T3's index in Slice
1 is *1*, and it will be swizzled using *1* and *phase id*. Whereas the
correct index of T3 should be *3*, which is the relative offset to the
beginning of the shared memory tensor being swizzled, and T3 should be
swizzled using *3* and *phase id*.

This PR proposes a hacky solution for this problem. We restore the
"correct" offset of each tile by **assuming that slicing on a specific
dim only happens at most once on the output of insert_slice_async**. I
admit it's risky and fragile.

The other possible solution is adopting cutlass' swizzling logic that
limits the indices being swizzled in a "bounding box" that matches the
mma instruction executes. For example, in the following tensor layout,
each 4x4 submatrix is a minimum swizzling unit, and the entire tensor
represents the tensor layout of operand A in `mma.16816`.

<img width="565" alt="image"
src="https://user-images.githubusercontent.com/2306281/201836879-4ca7824b-530c-4a06-a3d5-1e74a2de1b42.png">

Co-authored-by: Phil Tillet <phil@openai.com>
2022-11-19 19:57:16 -08:00
Chenggang Zhao
516a241234 [Triton-MLIR] Fix some typos (#874)
Fix some typos
2022-11-13 18:15:53 -08:00
Da Yan
4946167241 [Triton-MLIR] tt.dot operands now must have DotOperand layout; also added prefetch pass prototype (#712)
Co-authored-by: Jokeren <kerenzhou@openai.com>
Co-authored-by: Phil Tillet <phil@openai.com>
Co-authored-by: Superjomn <yanchunwei@outlook.com>
2022-11-10 05:57:27 +00:00
Yan Chunwei
0c87360657 [Triton-MLIR][Backend] Port FMADot conversion for DotOp (#844)
Co-authored-by: ben-zhang-609 <benzh609@gmail.com>
2022-11-09 12:57:50 +08:00
Keren Zhou
fdd59900f7 [Triton-MLIR] Replace triton.extract_slice with tensor.extract_slice and support more general tensor slicing (#837)
## Features

- Allow taking a block of tensor slice, as long as each dimension is
contiguous (unit stride).
- Fix some problems in `insert_slice_async`'s semantic.
- More general verification for ops that return shared layout encoding.

## Known Limitations

- `insert_slice_async` still uses the old semantic. May submit another
PR later to support similar semantic like `tensor.extract_slice`.
- No encoding verification for `tensor.extract_slice`.
- 3d tensor ops are broken.
- Strided accesses are not allowed.
- May cause a little performance slowdown since we are passing strides
as values but not constants (e.g., int).
It would be difficult to pass strides as attributes when we have control
flows. A block argument is possible to accept tensors with different
strides.
2022-11-06 22:59:03 -08:00
Philippe Tillet
a4ff0c362c [FRONTEND] Fix issues with atomics (#849) 2022-11-06 20:52:11 -08:00
Philippe Tillet
91a9773b38 [OPTIMIZER] Minor bugfixes that affected matmul codegen performance (#834) 2022-11-02 22:58:09 -07:00
Ian Bearman
f2106d0aa2 [BUILD] Fix Warnings and Enable Warnings as Errors (#794) 2022-10-28 12:36:09 -07:00
Keren Zhou
3b80801dff [Triton-MLIR][Backend] Fix many problems to get the pipeline working (#809)
1. Rewrite code generation of insert_slice_async.
2. Correct the wrong index passed to extract_slice in pipeline.
3. Add a prologue in pipeline to wait for dangling cp.asyncs.  
4. Move scf to cf conversion inside TritonGPUToLLVM because we need to
perform membar before scf to cf. It shouldn't be a technical limitation
and could be improved by a more general membar analysis.
5. Use an attribute to memoize the shared memory size and support
dynamic shared memory.
6. Prevent the combine pass to reorder insert_slice and extract_slice
across async_wait

Co-authored-by: Superjomn <yanchunwei@outlook.com>
2022-10-27 22:09:06 -07:00
Philippe Tillet
bb0f9235d1 [OPTIMIZER] Made layout simplification pass efficient for fused attention kernels (#790) 2022-10-21 16:52:15 -07:00
Philippe Tillet
dc0588a898 [OPTIMIZER] Improved layout simplification pass so it handles swizzled layouts better (#789)
Note: uncommented `test_gemm`, since backend has an issue with swizzling. This will get uncommented in a subsequent PR.
2022-10-20 19:03:37 -07:00
Philippe Tillet
38a80664b5 [OPTIMIZER] Updated TritonGPU-combine pass (#784)
WIP but should work int t…he cases we need so far
2022-10-16 21:19:42 -07:00
Philippe Tillet
498c685b46 [OPTIMIZER] layout simplification: ignore non-tensor iter arguments in for loop rematerialization (#749) 2022-10-07 21:52:29 -07:00
Philippe Tillet
9ddf0921fb [OPTIMIZER] Added DotOp to the list of expensive ops we don't want to rematerialize. (#718) 2022-09-27 09:05:49 -07:00
Shintaro Iwasaki
43be75ad42 [FRONTEND] Add scalar type support for some ops (#661)
This PR adds basic support for scalar-type inputs to some ops (cast and pointer arithmetics) for Triton-MLIR. Also renames getelementptr -> addptr
2022-09-15 16:12:52 -07:00
Keren Zhou
16aed94ff5 [Analysis/Allocation] Allocation passes now assumes that slices always alias (#108)
This code in this branch assumes the `src` operand in
`insert_slice_async` always aliases the result, which shouldn't hold for
generally cases but is just a workaround to make the pipeline pass work.

I'm also working on the complete analysis in another
[branch](https://github.com/openai/triton-mlir/tree/keren/analyze-slice).
2022-09-09 12:03:41 -07:00
Philippe Tillet
d0b4c67b05 [OPTIMIZER] Improved layout conversion simplification algorithm (#97)
This PR both simplifies the layout conversion simplification algorithm, and also improves it to make it work with vectorized element-wise ops. The conversion optimizer still has a lot of room for improvements, and other PRs will address its limitations (ideally via some sort of explicit cost model)
2022-09-02 16:52:44 -07:00
Philippe Tillet
192be76b3c [OPTIMIZER] Rewrite patterns for layout conversions (#64) 2022-08-18 12:49:37 -07:00
Philippe Tillet
6d62d88d4f [CI] run clang-format (#24) 2022-07-26 17:25:03 -07:00
Yan Da
366dddc3bc update mma encoding & triton-opt 2022-06-06 21:03:58 +08:00
Yan Da
c3c4ac3733 TritonGPU combiner 2022-05-16 19:17:15 +08:00