import pytest import torch from torch.testing import assert_close import triton import triton.language as tl @triton.jit def matmul_no_scf_kernel( a_ptr, b_ptr, c_ptr, stride_am, stride_ak, stride_bk, stride_bn, stride_cm, stride_cn, M: tl.constexpr, N: tl.constexpr, K: tl.constexpr ): offs_m = tl.arange(0, M) offs_n = tl.arange(0, N) offs_k = tl.arange(0, K) a_ptrs = a_ptr + offs_m[:, None] * stride_am + offs_k[None, :] * stride_ak b_ptrs = b_ptr + offs_k[:, None] * stride_bk + offs_n[None, :] * stride_bn a = tl.load(a_ptrs) b = tl.load(b_ptrs) c = tl.dot(a, b) c_ptrs = c_ptr + offs_m[:, None] * stride_cm + offs_n[None, :] * stride_cn tl.store(c_ptrs, c) # TODO: num_warps could only be 4 for now @pytest.mark.parametrize('SIZE_M,SIZE_N,SIZE_K,NUM_WARPS', [ [128, 256, 32, 4], [256, 128, 16, 4], [128, 16, 32, 4], [32, 128, 64, 4], [128, 128, 64, 4], [64, 128, 128, 4], [64, 128, 128, 2], ]) def test_gemm_no_scf(SIZE_M, SIZE_N, SIZE_K, NUM_WARPS): a = torch.randn((SIZE_M, SIZE_K), device='cuda', dtype=torch.float16) b = torch.randn((SIZE_K, SIZE_N), device='cuda', dtype=torch.float16) c = torch.empty((SIZE_M, SIZE_N), device=a.device, dtype=torch.float32) grid = lambda META: (1, ) matmul_no_scf_kernel[grid](a_ptr=a, b_ptr=b, c_ptr=c, stride_am=a.stride(0), stride_ak=a.stride(1), stride_bk=b.stride(0), stride_bn=b.stride(1), stride_cm=c.stride(0), stride_cn=c.stride(1), M=SIZE_M, N=SIZE_N, K=SIZE_K, num_warps=NUM_WARPS) golden = torch.matmul(a, b) torch.set_printoptions(profile="full") assert_close(c, golden, rtol=1e-3, atol=1e-3, check_dtype=False) @triton.jit def matmul_kernel( a_ptr, b_ptr, c_ptr, stride_am, stride_ak, stride_bk, stride_bn, stride_cm, stride_cn, M: tl.constexpr, N: tl.constexpr, K: tl.constexpr, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, ): offs_m = tl.arange(0, BLOCK_SIZE_M) offs_n = tl.arange(0, BLOCK_SIZE_N) offs_k = tl.arange(0, BLOCK_SIZE_K) a_ptrs = a_ptr + offs_m[:, None] * stride_am + offs_k[None, :] * stride_ak b_ptrs = b_ptr + offs_k[:, None] * stride_bk + offs_n[None, :] * stride_bn accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) for k in range(0, K, BLOCK_SIZE_K): a = tl.load(a_ptrs) b = tl.load(b_ptrs) accumulator += tl.dot(a, b) a_ptrs += BLOCK_SIZE_K * stride_ak b_ptrs += BLOCK_SIZE_K * stride_bk c_ptrs = c_ptr + offs_m[:, None] * stride_cm + offs_n[None, :] * stride_cn tl.store(c_ptrs, accumulator) # TODO: DotConversion in TritonGPUToLLVM cannot support non-splat C for the moment def get_variant_golden(a, b): SIZE_M = a.shape[0] SIZE_K = a.shape[1] SIZE_N = b.shape[1] assert a.shape[1] == b.shape[0] zero_M_K = torch.zeros((SIZE_M, SIZE_K)).cuda() zero_3M_K = torch.zeros((3 * SIZE_M, SIZE_K)).cuda() zero_K_N = torch.zeros((SIZE_K, SIZE_N)).cuda() zero_3K_N = torch.zeros((3 * SIZE_K, SIZE_N)).cuda() a_padded = torch.cat((a, zero_M_K, zero_M_K), 0) a_padded = torch.cat((a_padded, zero_3M_K, zero_3M_K), 1) b_padded = torch.cat((b, zero_K_N, zero_K_N), 0) b_padded = torch.cat((b_padded, zero_3K_N, zero_3K_N), 1) c_padded = torch.matmul(a_padded, b_padded) return c_padded[:SIZE_M, :SIZE_N] @pytest.mark.parametrize('SIZE_M,SIZE_N,SIZE_K,NUM_WARPS,BLOCK_SIZE_M,BLOCK_SIZE_N,BLOCK_SIZE_K', [ # Non-forloop [64, 32, 64, 4, 64, 32, 64], [128, 64, 128, 4, 128, 64, 128], # K-Forloop [64, 32, 128, 4, 64, 32, 64], [128, 16, 128, 4, 128, 16, 32], [32, 16, 128, 4, 32, 16, 32], [32, 64, 128, 4, 32, 64, 32], [32, 128, 256, 4, 32, 128, 64], [64, 128, 64, 4, 64, 128, 32], [64, 64, 128, 4, 64, 64, 32], [128, 128, 64, 4, 128, 128, 32], [128, 128, 128, 4, 128, 128, 32], [128, 128, 256, 4, 128, 128, 64], [128, 256, 128, 4, 128, 256, 32], [256, 128, 64, 4, 256, 128, 16], [128, 64, 128, 4, 128, 64, 32], ]) def test_gemm(SIZE_M, SIZE_N, SIZE_K, NUM_WARPS, BLOCK_SIZE_M, BLOCK_SIZE_N, BLOCK_SIZE_K): a = torch.randn((SIZE_M, SIZE_K), device='cuda', dtype=torch.float16) b = torch.randn((SIZE_K, SIZE_N), device='cuda', dtype=torch.float16) c = torch.empty((SIZE_M, SIZE_N), device=a.device, dtype=torch.float32) grid = lambda META: (1, ) matmul_kernel[grid](a_ptr=a, b_ptr=b, c_ptr=c, stride_am=a.stride(0), stride_ak=a.stride(1), stride_bk=b.stride(0), stride_bn=b.stride(1), stride_cm=c.stride(0), stride_cn=c.stride(1), M=a.shape[0], N=b.shape[1], K=a.shape[1], BLOCK_SIZE_M=BLOCK_SIZE_M, BLOCK_SIZE_N=BLOCK_SIZE_N, BLOCK_SIZE_K=BLOCK_SIZE_K, num_warps=NUM_WARPS) golden = torch.matmul(a, b) # It's not easy to get a proper error threshold in different size # Here the gemm calculation is padded to a different size in order to get # a variant version of the golden result. And the error between golden and # golden_variant provide reference on selecting the proper rtol / atol. golden_variant = get_variant_golden(a, b) golden_diff = golden - golden_variant golden_abs_err = torch.max(torch.abs(golden_diff)).item() golden_rel_err = torch.max(torch.abs(golden_diff / golden)).item() torch.set_printoptions(profile="full") assert_close(c, golden, rtol=max(1e-4, 1.5 * golden_rel_err), atol=max(1e-4, 1.5 * golden_abs_err), check_dtype=False)