// RUN: triton-opt %s --mlir-disable-threading -test-print-alias -split-input-file 2>&1 | FileCheck %s #AL = #triton_gpu.blocked<{sizePerThread = [1, 4], threadsPerWarp = [4, 8], warpsPerCTA = [4, 1], order = [1, 0]}> #BL = #triton_gpu.blocked<{sizePerThread = [1, 4], threadsPerWarp = [1, 32], warpsPerCTA = [4, 1], order = [1, 0]}> #A_SHARED = #triton_gpu.shared<{vec = 2, perPhase = 2, maxPhase = 4, order = [1, 0]}> #B_SHARED = #triton_gpu.shared<{vec = 2, perPhase = 2, maxPhase = 4, order = [1, 0]}> #C = #triton_gpu.mma<{versionMajor = 2, warpsPerCTA = [4, 1]}> #A_DOT = #triton_gpu.dot_op<{opIdx = 0, parent = #C}> #B_DOT = #triton_gpu.dot_op<{opIdx = 1, parent = #C}> // CHECK-LABEL: matmul_loop // There shouldn't be any aliasing with the dot op encoding. func @matmul_loop(%lb : index, %ub : index, %step : index, %A : !tt.ptr, %B : !tt.ptr) { %a_ptr_init = tt.broadcast %A : (!tt.ptr) -> tensor<128x32x!tt.ptr, #AL> %b_ptr_init = tt.broadcast %B : (!tt.ptr) -> tensor<32x128x!tt.ptr, #BL> %a_mask = arith.constant dense : tensor<128x32xi1, #AL> %a_other = arith.constant dense<0.00e+00> : tensor<128x32xf16, #AL> %b_mask = arith.constant dense : tensor<32x128xi1, #BL> %b_other = arith.constant dense<0.00e+00> : tensor<32x128xf16, #BL> %c_init = arith.constant dense<0.00e+00> : tensor<128x128xf32, #C> %a_off = arith.constant dense<4> : tensor<128x32xi32, #AL> %b_off = arith.constant dense<4> : tensor<32x128xi32, #BL> scf.for %iv = %lb to %ub step %step iter_args(%a_ptr = %a_ptr_init, %b_ptr = %b_ptr_init, %prev_c = %c_init) -> (tensor<128x32x!tt.ptr, #AL>, tensor<32x128x!tt.ptr, #BL>, tensor<128x128xf32, #C>) { %a_ = tt.load %a_ptr, %a_mask, %a_other {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<128x32xf16, #AL> %a = triton_gpu.convert_layout %a_ : (tensor<128x32xf16, #AL>) -> tensor<128x32xf16, #A_DOT> %b_ = tt.load %b_ptr, %b_mask, %b_other {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<32x128xf16, #BL> %b = triton_gpu.convert_layout %b_ : (tensor<32x128xf16, #BL>) -> tensor<32x128xf16, #B_DOT> %c = tt.dot %a, %b, %prev_c {transA = false, transB = false, allowTF32 = true} : tensor<128x32xf16, #A_DOT> * tensor<32x128xf16, #B_DOT> -> tensor<128x128xf32, #C> %next_a_ptr = tt.addptr %a_ptr, %a_off : tensor<128x32x!tt.ptr, #AL>, tensor<128x32xi32, #AL> %next_b_ptr = tt.addptr %b_ptr, %b_off : tensor<32x128x!tt.ptr, #BL>, tensor<32x128xi32, #BL> scf.yield %next_a_ptr, %next_b_ptr, %c : tensor<128x32x!tt.ptr, #AL>, tensor<32x128x!tt.ptr, #BL>, tensor<128x128xf32, #C> } return } // CHECK-LABEL: alloc func @alloc(%A : !tt.ptr) { // CHECK: %cst -> %cst %cst0 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A_SHARED> %cst1 = arith.constant dense<0.000000e+00> : tensor<16x32xf16, #AL> // CHECK: %0 -> %0 %cst2 = triton_gpu.alloc_tensor : tensor<16x16xf16, #A_SHARED> return } // CHECK-LABEL: convert func @convert(%A : !tt.ptr) { %cst0 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #AL> // CHECK: %0 -> %0 %cst1 = triton_gpu.convert_layout %cst0 : (tensor<16x16xf16, #AL>) -> tensor<16x16xf16, #A_SHARED> return } // CHECK-LABEL: trans func @trans(%A : !tt.ptr) { // CHECK: %cst -> %cst %tensor = arith.constant dense<0.000000e+00> : tensor<16x32xf16, #A_SHARED> // CHECK: %0 -> %cst %b = tt.trans %tensor : (tensor<16x32xf16, #A_SHARED>) -> tensor<32x16xf16, #A_SHARED> return } // CHECK-LABEL: insert_slice_async func @insert_slice_async(%A : !tt.ptr, %i1 : i1) { %a_ptr = tt.broadcast %A : (!tt.ptr) -> tensor<16x16x!tt.ptr, #AL> %mask = tt.splat %i1 : (i1) -> tensor<16x16xi1, #AL> %other = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #AL> // CHECK: %cst_0 -> %cst_0 %tensor = arith.constant dense<0.000000e+00> : tensor<1x16x16xf16, #A_SHARED> %index = arith.constant 0 : i32 // CHECK: %2 -> %cst_0 %a = triton_gpu.insert_slice_async %a_ptr, %tensor, %index, %mask, %other {axis = 0 : i32, cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<16x16x!tt.ptr, #AL> -> tensor<1x16x16xf16, #A_SHARED> return } // CHECK-LABEL: insert_slice func @insert_slice(%A : !tt.ptr, %i1 : i1) { %a_ptr = tt.broadcast %A : (!tt.ptr) -> tensor<16x16x!tt.ptr, #AL> %mask = tt.splat %i1 : (i1) -> tensor<16x16xi1, #AL> %other = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #AL> // CHECK: %cst_0 -> %cst_0 %tensor = arith.constant dense<0.000000e+00> : tensor<1x16x16xf16, #A_SHARED> %index = arith.constant 0 : index %a = tt.load %a_ptr, %mask, %other {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<16x16xf16, #AL> // CHECK: %3 -> %cst_0 %b = tensor.insert_slice %a into %tensor[%index, 0, 0][1, 16, 16][1, 1, 1]: tensor<16x16xf16, #AL> into tensor<1x16x16xf16, #A_SHARED> return } // CHECK-LABEL: extract_slice func @extract_slice(%A : !tt.ptr) { // CHECK: %cst -> %cst %cst0 = arith.constant dense<0.000000e+00> : tensor<1x16x16xf16, #A_SHARED> %index = arith.constant 0 : index // CHECK-NEXT: %0 -> %cst %cst1 = tensor.extract_slice %cst0[%index, 0, 0][1, 16, 16][1, 1, 1] : tensor<1x16x16xf16, #A_SHARED> to tensor<16x16xf16, #A_SHARED> return } // CHECK-LABEL: if_cat func @if_cat(%i1 : i1) { // CHECK: %cst -> %cst %cst0 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A_SHARED> // CHECK: %cst_0 -> %cst_0 %cst1 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A_SHARED> // CHECK: %0 -> %1,%1 %cst2 = scf.if %i1 -> tensor<32x16xf16, #A_SHARED> { // CHECK: %1 -> %1 %a = tt.cat %cst0, %cst1 {axis = 0} : (tensor<16x16xf16, #A_SHARED>, tensor<16x16xf16, #A_SHARED>) -> tensor<32x16xf16, #A_SHARED> scf.yield %a : tensor<32x16xf16, #A_SHARED> } else { // CHECK: %1 -> %1 %b = tt.cat %cst0, %cst1 {axis = 0} : (tensor<16x16xf16, #A_SHARED>, tensor<16x16xf16, #A_SHARED>) -> tensor<32x16xf16, #A_SHARED> scf.yield %b : tensor<32x16xf16, #A_SHARED> } return } // CHECK-LABEL: if_alias func @if_alias(%i1 : i1) { // CHECK: %cst -> %cst %cst0 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A_SHARED> // CHECK-NEXT: %cst_0 -> %cst_0 %cst1 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A_SHARED> // CHECK-NEXT: %0 -> %cst,%cst_0 %cst2 = scf.if %i1 -> tensor<16x16xf16, #A_SHARED> { scf.yield %cst0 : tensor<16x16xf16, #A_SHARED> } else { scf.yield %cst1 : tensor<16x16xf16, #A_SHARED> } return } // CHECK-LABEL: for func @for(%lb : index, %ub : index, %step : index, %A : !tt.ptr, %B : !tt.ptr) { // CHECK: %cst -> %cst %a_shared_init = arith.constant dense<0.00e+00> : tensor<128x32xf16, #A_SHARED> // CHECK-NEXT: %cst_0 -> %cst_0 %b_shared_init = arith.constant dense<0.00e+00> : tensor<128x32xf16, #A_SHARED> // CHECK-NEXT: %cst_1 -> %cst_1 %c_shared_init = arith.constant dense<0.00e+00> : tensor<128x32xf16, #A_SHARED> // CHECK-NEXT: %arg6 -> %cst // CHECK-NEXT: %arg7 -> %cst_0 // CHECK-NEXT: %arg8 -> %cst_1 // CHECK-NEXT: %0#0 -> %cst,%cst_0 // CHECK-NEXT: %0#1 -> %cst,%cst_0 // CHECK-NEXT: %0#2 -> %cst,%cst_0 %a_shared, %b_shared, %c_shared = scf.for %iv = %lb to %ub step %step iter_args(%a_shared = %a_shared_init, %b_shared = %b_shared_init, %c_shared = %c_shared_init) -> (tensor<128x32xf16, #A_SHARED>, tensor<128x32xf16, #A_SHARED>, tensor<128x32xf16, #A_SHARED>) { scf.yield %b_shared, %a_shared, %a_shared : tensor<128x32xf16, #A_SHARED>, tensor<128x32xf16, #A_SHARED>, tensor<128x32xf16, #A_SHARED> } return } // CHECK-LABEL: for_if func @for_if(%lb : index, %ub : index, %step : index, %A : !tt.ptr, %B : !tt.ptr, %i1 : i1) { // CHECK: %cst -> %cst %a_shared_init = arith.constant dense<0.00e+00> : tensor<128x32xf16, #A_SHARED> // CHECK-NEXT: %cst_0 -> %cst_0 %b_shared_init = arith.constant dense<0.00e+00> : tensor<128x32xf16, #A_SHARED> // CHECK-NEXT: %cst_1 -> %cst_1 %c_shared_init = arith.constant dense<0.00e+00> : tensor<128x32xf16, #A_SHARED> // CHECK-NEXT: %arg7 -> %cst // CHECK-NEXT: %arg8 -> %cst_0 // CHECK-NEXT: %arg9 -> %cst_1 // CHECK-NEXT: %0#0 -> %cst,%cst_0 // CHECK-NEXT: %0#1 -> %cst,%cst_0 // CHECK-NEXT: %0#2 -> %cst,%cst_0 %a_shared, %b_shared, %c_shared = scf.for %iv = %lb to %ub step %step iter_args(%a_shared = %a_shared_init, %b_shared = %b_shared_init, %c_shared = %c_shared_init) -> (tensor<128x32xf16, #A_SHARED>, tensor<128x32xf16, #A_SHARED>, tensor<128x32xf16, #A_SHARED>) { scf.if %i1 { %index = arith.constant 8 : index // CHECK-NEXT: %1 -> %cst,%cst_0 %cst0 = tensor.extract_slice %a_shared[%index, 0][1, 32][1, 1] : tensor<128x32xf16, #A_SHARED> to tensor<32xf16, #A_SHARED> scf.yield } scf.yield %b_shared, %a_shared, %a_shared : tensor<128x32xf16, #A_SHARED>, tensor<128x32xf16, #A_SHARED>, tensor<128x32xf16, #A_SHARED> } return } // CHECK-LABEL: for_if_for func @for_if_for(%lb : index, %ub : index, %step : index, %A : !tt.ptr, %B : !tt.ptr, %i1 : i1) { // CHECK: %cst -> %cst %a_shared_init = arith.constant dense<0.00e+00> : tensor<128x32xf16, #A_SHARED> // CHECK-NEXT: %cst_0 -> %cst_0 %b_shared_init = arith.constant dense<0.00e+00> : tensor<128x32xf16, #A_SHARED> // CHECK-NEXT: %cst_1 -> %cst_1 %c_shared_init = arith.constant dense<0.00e+00> : tensor<128x32xf16, #A_SHARED> // CHECK-NEXT: %arg7 -> %cst // CHECK-NEXT: %arg8 -> %cst_0 // CHECK-NEXT: %arg9 -> %cst_1 // CHECK-NEXT: %0#0 -> %cst // CHECK-NEXT: %0#1 -> %cst_0 // CHECK-NEXT: %0#2 -> %cst_2,%cst_2 %a_shared, %b_shared, %c_shared = scf.for %iv = %lb to %ub step %step iter_args(%a_shared = %a_shared_init, %b_shared = %b_shared_init, %c_shared = %c_shared_init) -> (tensor<128x32xf16, #A_SHARED>, tensor<128x32xf16, #A_SHARED>, tensor<128x32xf16, #A_SHARED>) { // CHECK-NEXT: %arg11 -> %cst_1,%cst_2,%cst_2 // CHECK-NEXT: %1 -> %cst_2,%cst_2 %c_shared_next = scf.for %jv = %lb to %ub step %step iter_args(%c_shared_next = %c_shared) -> (tensor<128x32xf16, #A_SHARED>) { // CHECK-NEXT: %2 -> %cst_2,%cst_2 %c_shared_next_next = scf.if %i1 -> tensor<128x32xf16, #A_SHARED> { // CHECK-NEXT: %cst_2 -> %cst_2 %cst0 = arith.constant dense<0.00e+00> : tensor<128x32xf16, #A_SHARED> scf.yield %cst0 : tensor<128x32xf16, #A_SHARED> } else { // CHECK-NEXT: %cst_2 -> %cst_2 %cst0 = arith.constant dense<0.00e+00> : tensor<128x32xf16, #A_SHARED> scf.yield %cst0 : tensor<128x32xf16, #A_SHARED> } scf.yield %c_shared_next_next : tensor<128x32xf16, #A_SHARED> } scf.yield %a_shared, %b_shared, %c_shared_next : tensor<128x32xf16, #A_SHARED>, tensor<128x32xf16, #A_SHARED>, tensor<128x32xf16, #A_SHARED> } return }