import numpy as np import pytest import scipy.stats import torch import triton import triton.language as tl ##################################### # Reference Philox Implementation ##################################### class PhiloxConfig: def __init__(self, PHILOX_ROUND_A, PHILOX_ROUND_B, PHILOX_KEY_A, PHILOX_KEY_B, DTYPE): self.PHILOX_ROUND_A = np.array(PHILOX_ROUND_A, dtype=DTYPE) self.PHILOX_ROUND_B = np.array(PHILOX_ROUND_B, dtype=DTYPE) self.PHILOX_KEY_A = np.array(PHILOX_KEY_A, dtype=DTYPE) self.PHILOX_KEY_B = np.array(PHILOX_KEY_B, dtype=DTYPE) self.DTYPE = DTYPE # This is better for GPU PHILOX_32 = PhiloxConfig( PHILOX_KEY_A=0x9E3779B9, PHILOX_KEY_B=0xBB67AE85, PHILOX_ROUND_A=0xD2511F53, PHILOX_ROUND_B=0xCD9E8D57, DTYPE=np.uint32, ) # This is what numpy implements PHILOX_64 = PhiloxConfig( PHILOX_KEY_A=0x9E3779B97F4A7C15, PHILOX_KEY_B=0xBB67AE8584CAA73B, PHILOX_ROUND_A=0xD2E7470EE14C6C93, PHILOX_ROUND_B=0xCA5A826395121157, DTYPE=np.uint64, ) class CustomPhilox4x: def __init__(self, seed, config): self._config = config seed = self._into_pieces(seed) self._key = np.array(seed[:2], dtype=self._dtype) self._counter = np.array((0, 0) + seed[2:], dtype=self._dtype) @property def _dtype(self): return self._config.DTYPE def _into_pieces(self, n, pad=4): res = [] while len(res) < pad: res.append(np.array(n, dtype=self._dtype)) n >>= (np.dtype(self._dtype).itemsize * 8) assert n == 0 return tuple(res) def _multiply_low_high(self, a, b): low = a * b high = int(a) * int(b) high = np.array(high >> (np.dtype(self._dtype).itemsize * 8), dtype=self._dtype) return low, high def _single_round(self, counter, key): lo0, hi0 = self._multiply_low_high(self._config.PHILOX_ROUND_A, counter[0]) lo1, hi1 = self._multiply_low_high(self._config.PHILOX_ROUND_B, counter[2]) ret0 = hi1 ^ counter[1] ^ key[0] ret1 = lo1 ret2 = hi0 ^ counter[3] ^ key[1] ret3 = lo0 return np.array([ret0, ret1, ret2, ret3], dtype=self._dtype) def _raise_key(self, key): pk = [self._config.PHILOX_KEY_A, self._config.PHILOX_KEY_B] return key + np.array(pk, dtype=self._dtype) def random_raw(self): counter = self._counter key = self._key for _ in range(10): counter = self._single_round(counter, key) key = self._raise_key(key) self.advance(1) return counter def advance(self, n_steps): self._counter[0] += n_steps assert self._counter[0] < 2**32, "FIXME: doesn't work for large offsets" class CustomPhilox(CustomPhilox4x): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.buffer = [] def random_raw(self): if len(self.buffer) == 0: self.buffer = list(super().random_raw())[::-1] return int(self.buffer.pop()) ##################################### # Unit Tests ##################################### BLOCK = 1024 # test generation of random uint32 @pytest.mark.parametrize('size, seed', [(size, seed) for size in ['10', '4,53', '10000'] for seed in [0, 42, 124, 54, 0xffffffff, 0xdeadbeefcafeb0ba]] ) def test_randint(size, seed, device='cuda'): size = list(map(int, size.split(','))) @triton.jit def kernel(X, N, seed): offset = tl.program_id(0) * BLOCK + tl.arange(0, BLOCK) rand = tl.randint(seed, offset) tl.store(X + offset, rand, mask=offset < N) # triton result x = torch.empty(size, dtype=torch.int32, device=device) N = x.numel() grid = (triton.cdiv(N, BLOCK),) kernel[grid](x, N, seed) out_tri = x.cpu().numpy().astype(np.uint32).flatten().tolist() # reference result gen = CustomPhilox4x(seed, config=PHILOX_32) out_ref = [gen.random_raw()[0] for _ in out_tri] assert out_tri == out_ref # test uniform PRNG @pytest.mark.parametrize('size, seed', [(size, seed) for size in [1000000] for seed in [0, 42, 124, 54]] ) def test_rand(size, seed, device='cuda'): @triton.jit def kernel(X, N, seed): offset = tl.program_id(0) * BLOCK + tl.arange(0, BLOCK) rand = tl.rand(seed, offset) tl.store(X + offset, rand, mask=offset < N) # triton result x = torch.empty(size, dtype=torch.float32, device=device) N = x.numel() grid = (triton.cdiv(N, BLOCK),) kernel[grid](x, N, seed) assert all((x >= 0) & (x <= 1)) assert scipy.stats.kstest(x.tolist(), 'uniform', args=(0, 1)).statistic < 0.01 # test normal PRNG @pytest.mark.parametrize('size, seed', [(size, seed) for size in [1000000] for seed in [0, 42, 124, 54]] ) def test_randn(size, seed, device='cuda'): @triton.jit def kernel(X, N, seed): offset = tl.program_id(0) * BLOCK + tl.arange(0, BLOCK) rand = tl.randn(seed, offset) tl.store(X + offset, rand, mask=offset < N) # triton result x = torch.empty(size, dtype=torch.float32, device=device) N = x.numel() grid = (triton.cdiv(N, BLOCK),) kernel[grid](x, N, seed) assert abs(x.mean()) < 1e-2 assert abs(x.std() - 1) < 1e-2 # tl.rand() should never produce >=1.0 def test_rand_limits(): @triton.jit def kernel(input, output, n: tl.constexpr): idx = tl.arange(0, n) x = tl.load(input + idx) y = tl.random.uint32_to_uniform_float(x) tl.store(output + idx, y) min_max_int32 = torch.tensor([ torch.iinfo(torch.int32).min, torch.iinfo(torch.int32).max, ], dtype=torch.int32, device='cuda') output = torch.empty(2, dtype=torch.float32, device='cuda') kernel[(1,)](min_max_int32, output, 2) assert output[0] == output[1] assert 1.0 - torch.finfo(torch.float32).eps <= output[0].item() < 1.0