// RUN: triton-opt %s -split-input-file -tritongpu-pipeline=num-stages=3 -canonicalize | FileCheck %s // 4 warps // matmul: 128x32 @ 32x128 -> 128x128 #AL = #triton_gpu.blocked<{sizePerThread = [1, 4], threadsPerWarp = [4, 8], warpsPerCTA = [4, 1], order = [1, 0]}> #BL = #triton_gpu.blocked<{sizePerThread = [1, 4], threadsPerWarp = [1, 32], warpsPerCTA = [4, 1], order = [1, 0]}> #C = #triton_gpu.mma<{versionMajor = 2, warpsPerCTA = [4, 1]}> #A = #triton_gpu.dot_op<{opIdx = 0, parent = #C}> #B = #triton_gpu.dot_op<{opIdx = 1, parent = #C}> // CHECK: func @matmul_loop // CHECK-DAG: %[[CONSTANT_0:.*]] = arith.constant 0 : i32 // CHECK-DAG: %[[CONSTANT_1:.*]] = arith.constant 1 : i32 // CHECK-DAG: %[[CONSTANT_2:.*]] = arith.constant 2 : i32 // CHECK-DAG: %[[CONSTANT_3:.*]] = arith.constant 3 : i32 // CHECK-DAG: %[[LOOP_COND_0:.*]] = arith.cmpi slt, %[[LB:.*]], %[[UB:.*]] // CHECK: %[[ABUFFER:.*]] = triton_gpu.alloc_tensor // CHECK-DAG: %[[LOOP_COND_0_SPLAT_A:.*]] = tt.splat %[[LOOP_COND_0]] // CHECK: %[[A0BUFFER:.*]] = triton_gpu.insert_slice_async {{.*}}, {{.*}}, %[[CONSTANT_0]], %[[LOOP_COND_0_SPLAT_A]] // CHECK: %[[BBUFFER:.*]] = triton_gpu.alloc_tensor // CHECK-DAG: %[[LOOP_COND_0_SPLAT_B:.*]] = tt.splat %[[LOOP_COND_0]] // CHECK: %[[B0BUFFER:.*]] = triton_gpu.insert_slice_async {{.*}}, {{.*}}, %[[CONSTANT_0]], %[[LOOP_COND_0_SPLAT_B]] // CHECK-DAG: %[[IV_1:.*]] = arith.addi %[[LB]], %[[STEP:.*]] // CHECK-DAG: %[[LOOP_COND_1:.*]] = arith.cmpi slt, %[[IV_1]], %[[UB]] // CHECK-DAG: %[[LOOP_COND_1_SPLAT_A:.*]] = tt.splat %[[LOOP_COND_1]] // CHECK: %[[A1BUFFER:.*]] = triton_gpu.insert_slice_async {{.*}}, {{.*}}, %[[CONSTANT_1]], %[[LOOP_COND_1_SPLAT_A]] // CHECK-DAG: %[[LOOP_COND_1_SPLAT_B:.*]] = tt.splat %[[LOOP_COND_1]] // CHECK: %[[B1BUFFER:.*]] = triton_gpu.insert_slice_async {{.*}}, {{.*}}, %[[CONSTANT_1]], %[[LOOP_COND_1_SPLAT_B]] // CHECK: triton_gpu.async_wait {num = 2 : i32} // CHECK: %[[A0:.*]] = tensor.extract_slice %[[A1BUFFER]][0, 0, 0] // CHECK: %[[B0:.*]] = tensor.extract_slice %[[B1BUFFER]][0, 0, 0] // CHECK: scf.for {{.*}} iter_args({{.*}}, {{.*}}, {{.*}}, {{.*}}, {{.*}}, %[[arg_a0:.*]] = %[[A0]], %[[arg_b0:.*]] = %[[B0]], {{.*}}, {{.*}}, {{.*}}, %[[PIPELINE_IDX:.*]] = %[[CONSTANT_2]], %[[LOOP_IDX:.*]] = %[[CONSTANT_1]] // CHECK: %[[arg_a0_dot_op:.*]] = triton_gpu.convert_layout %[[arg_a0]] // CHECK: %[[arg_b0_dot_op:.*]] = triton_gpu.convert_layout %[[arg_b0]] // CHECK: tt.dot %[[arg_a0_dot_op]], %[[arg_b0_dot_op]], {{.*}} // CHECK-DAG: %[[INSERT_IDX:.*]] = arith.remsi %[[PIPELINE_IDX]], %[[CONSTANT_3]] // CHECK-DAG: %[[EXTRACT_INT:.*]] = arith.remsi %[[LOOP_IDX]], %[[CONSTANT_3]] // CHECK-DAG: %[[EXTRACT_IDX:.*]] = arith.index_cast %[[EXTRACT_INT]] : i32 to index // CHECK: %[[NEXT_A_BUFFER:.*]] = triton_gpu.insert_slice_async {{.*}}, {{.*}}, %[[INSERT_IDX]] // CHECK: %[[NEXT_B_BUFFER:.*]] = triton_gpu.insert_slice_async {{.*}}, {{.*}}, %[[INSERT_IDX]] // CHECK: triton_gpu.async_wait {num = 2 : i32} // CHECK: %[[NEXT_A:.*]] = tensor.extract_slice %[[NEXT_A_BUFFER]][%[[EXTRACT_IDX]], 0, 0] // CHECK: %[[NEXT_B:.*]] = tensor.extract_slice %[[NEXT_B_BUFFER]][%[[EXTRACT_IDX]], 0, 0] // CHECK-DAG: %[[NEXT_PIPELINE_IDX:.*]] = arith.addi %[[PIPELINE_IDX]], %[[CONSTANT_1]] // CHECK-DAG: %[[NEXT_LOOP_IDX:.*]] = arith.addi %[[LOOP_IDX]], %[[CONSTANT_1]] // CHECK: scf.yield {{.*}}, {{.*}}, {{.*}}, %[[NEXT_A_BUFFER]], %[[NEXT_B_BUFFER]], %[[NEXT_A]], %[[NEXT_B]], {{.*}}, {{.*}}, {{.*}}, %[[NEXT_PIPELINE_IDX]], %[[NEXT_LOOP_IDX]] func @matmul_loop(%lb : index, %ub : index, %step : index, %A : !tt.ptr, %B : !tt.ptr) { %a_ptr_init = tt.broadcast %A : (!tt.ptr) -> tensor<128x32x!tt.ptr, #AL> %b_ptr_init = tt.broadcast %B : (!tt.ptr) -> tensor<32x128x!tt.ptr, #BL> %a_mask = arith.constant dense : tensor<128x32xi1, #AL> %a_other = arith.constant dense<0.00e+00> : tensor<128x32xf16, #AL> %b_mask = arith.constant dense : tensor<32x128xi1, #BL> %b_other = arith.constant dense<0.00e+00> : tensor<32x128xf16, #BL> %c_init = arith.constant dense<0.00e+00> : tensor<128x128xf32, #C> %a_off = arith.constant dense<4> : tensor<128x32xi32, #AL> %b_off = arith.constant dense<4> : tensor<32x128xi32, #BL> scf.for %iv = %lb to %ub step %step iter_args(%a_ptr = %a_ptr_init, %b_ptr = %b_ptr_init, %prev_c = %c_init) -> (tensor<128x32x!tt.ptr, #AL>, tensor<32x128x!tt.ptr, #BL>, tensor<128x128xf32, #C>) { %a_ = tt.load %a_ptr {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<128x32xf16, #AL> %a = triton_gpu.convert_layout %a_ : (tensor<128x32xf16, #AL>) -> tensor<128x32xf16, #A> %b_ = tt.load %b_ptr, %b_mask, %b_other {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<32x128xf16, #BL> %b = triton_gpu.convert_layout %b_ : (tensor<32x128xf16, #BL>) -> tensor<32x128xf16, #B> %c = tt.dot %a, %b, %prev_c {allowTF32 = true, transA = false, transB = false} : tensor<128x32xf16, #A> * tensor<32x128xf16, #B> -> tensor<128x128xf32, #C> %next_a_ptr = tt.addptr %a_ptr, %a_off : tensor<128x32x!tt.ptr, #AL>, tensor<128x32xi32, #AL> %next_b_ptr = tt.addptr %b_ptr, %b_off : tensor<32x128x!tt.ptr, #BL>, tensor<32x128xi32, #BL> scf.yield %next_a_ptr, %next_b_ptr, %c : tensor<128x32x!tt.ptr, #AL>, tensor<32x128x!tt.ptr, #BL>, tensor<128x128xf32, #C> } return } // CHECK: func @matmul_loop_nested // CHECK-DAG: %[[CONSTANT_0:.*]] = arith.constant 0 : i32 // CHECK-DAG: %[[CONSTANT_1:.*]] = arith.constant 1 : i32 // CHECK-DAG: %[[CONSTANT_2:.*]] = arith.constant 2 : i32 // CHECK-DAG: %[[CONSTANT_3:.*]] = arith.constant 3 : i32 // CHECK: scf.for // CHECK: %[[ABUFFER:.*]] = triton_gpu.alloc_tensor // CHECK: %[[A0BUFFER:.*]] = triton_gpu.insert_slice_async {{.*}}, {{.*}}, %[[CONSTANT_0]] // CHECK: %[[BBUFFER:.*]] = triton_gpu.alloc_tensor // CHECK: %[[B0BUFFER:.*]] = triton_gpu.insert_slice_async {{.*}}, {{.*}}, %[[CONSTANT_0]] // CHECK: %[[A1BUFFER:.*]] = triton_gpu.insert_slice_async {{.*}}, {{.*}}, %[[CONSTANT_1]] // CHECK: %[[B1BUFFER:.*]] = triton_gpu.insert_slice_async {{.*}}, {{.*}}, %[[CONSTANT_1]] // CHECK: triton_gpu.async_wait {num = 2 : i32} // CHECK: %[[A0:.*]] = tensor.extract_slice %[[A1BUFFER]][0, 0, 0] // CHECK: %[[B0:.*]] = tensor.extract_slice %[[B1BUFFER]][0, 0, 0] // CHECK: scf.for {{.*}} iter_args({{.*}}, {{.*}}, {{.*}}, {{.*}}, {{.*}}, %[[arg_a0:.*]] = %[[A0]], %[[arg_b0:.*]] = %[[B0]], {{.*}}, {{.*}}, {{.*}}, %[[PIPELINE_IDX:.*]] = %[[CONSTANT_2]], %[[LOOP_IDX:.*]] = %[[CONSTANT_1]] // CHECK: %[[arg_a0_dot_op:.*]] = triton_gpu.convert_layout %[[arg_a0]] // CHECK: %[[arg_b0_dot_op:.*]] = triton_gpu.convert_layout %[[arg_b0]] // CHECK: tt.dot %[[arg_a0_dot_op]], %[[arg_b0_dot_op]], {{.*}} // CHECK-DAG: %[[INSERT_IDX:.*]] = arith.remsi %[[PIPELINE_IDX]], %[[CONSTANT_3]] // CHECK-DAG: %[[EXTRACT_INT:.*]] = arith.remsi %[[LOOP_IDX]], %[[CONSTANT_3]] // CHECK-DAG: %[[EXTRACT_IDX:.*]] = arith.index_cast %[[EXTRACT_INT]] : i32 to index // CHECK: %[[NEXT_A_BUFFER:.*]] = triton_gpu.insert_slice_async {{.*}}, {{.*}}, %[[INSERT_IDX]] // CHECK: %[[NEXT_B_BUFFER:.*]] = triton_gpu.insert_slice_async {{.*}}, {{.*}}, %[[INSERT_IDX]] // CHECK: triton_gpu.async_wait {num = 2 : i32} // CHECK: %[[NEXT_A:.*]] = tensor.extract_slice %[[NEXT_A_BUFFER]][%[[EXTRACT_IDX]], 0, 0] // CHECK: %[[NEXT_B:.*]] = tensor.extract_slice %[[NEXT_B_BUFFER]][%[[EXTRACT_IDX]], 0, 0] // CHECK-DAG: %[[NEXT_PIPELINE_IDX:.*]] = arith.addi %[[PIPELINE_IDX]], %[[CONSTANT_1]] // CHECK-DAG: %[[NEXT_LOOP_IDX:.*]] = arith.addi %[[LOOP_IDX]], %[[CONSTANT_1]] // CHECK: scf.yield {{.*}}, {{.*}}, {{.*}}, %[[NEXT_A_BUFFER]], %[[NEXT_B_BUFFER]], %[[NEXT_A]], %[[NEXT_B]], {{.*}}, {{.*}}, {{.*}}, %[[NEXT_PIPELINE_IDX]], %[[NEXT_LOOP_IDX]] func @matmul_loop_nested(%lb : index, %ub : index, %step : index, %A : !tt.ptr, %B : !tt.ptr) { scf.for %iv0 = %lb to %ub step %step { %a_ptr_init = tt.broadcast %A : (!tt.ptr) -> tensor<128x32x!tt.ptr, #AL> %b_ptr_init = tt.broadcast %B : (!tt.ptr) -> tensor<32x128x!tt.ptr, #BL> %a_mask = arith.constant dense : tensor<128x32xi1, #AL> %a_other = arith.constant dense<0.00e+00> : tensor<128x32xf16, #AL> %b_mask = arith.constant dense : tensor<32x128xi1, #BL> %b_other = arith.constant dense<0.00e+00> : tensor<32x128xf16, #BL> %c_init = arith.constant dense<0.00e+00> : tensor<128x128xf32, #C> %a_off = arith.constant dense<4> : tensor<128x32xi32, #AL> %b_off = arith.constant dense<4> : tensor<32x128xi32, #BL> scf.for %iv = %lb to %ub step %step iter_args(%a_ptr = %a_ptr_init, %b_ptr = %b_ptr_init, %prev_c = %c_init) -> (tensor<128x32x!tt.ptr, #AL>, tensor<32x128x!tt.ptr, #BL>, tensor<128x128xf32, #C>) { %a_ = tt.load %a_ptr, %a_mask, %a_other {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<128x32xf16, #AL> %a = triton_gpu.convert_layout %a_ : (tensor<128x32xf16, #AL>) -> tensor<128x32xf16, #A> %b_ = tt.load %b_ptr, %b_mask, %b_other {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<32x128xf16, #BL> %b = triton_gpu.convert_layout %b_ : (tensor<32x128xf16, #BL>) -> tensor<32x128xf16, #B> %c = tt.dot %a, %b, %prev_c {allowTF32 = true, transA = false, transB = false} : tensor<128x32xf16, #A> * tensor<32x128xf16, #B> -> tensor<128x128xf32, #C> %next_a_ptr = tt.addptr %a_ptr, %a_off : tensor<128x32x!tt.ptr, #AL>, tensor<128x32xi32, #AL> %next_b_ptr = tt.addptr %b_ptr, %b_off : tensor<32x128x!tt.ptr, #BL>, tensor<32x128xi32, #BL> scf.yield %next_a_ptr, %next_b_ptr, %c : tensor<128x32x!tt.ptr, #AL>, tensor<32x128x!tt.ptr, #BL>, tensor<128x128xf32, #C> } } return } // CHECK: func @matmul_loop_single_pipeline // CHECK-DAG: %[[CONSTANT_0:.*]] = arith.constant 0 : i32 // CHECK-DAG: %[[CONSTANT_1:.*]] = arith.constant 1 : i32 // CHECK-DAG: %[[CONSTANT_2:.*]] = arith.constant 2 : i32 // CHECK-DAG: %[[CONSTANT_3:.*]] = arith.constant 3 : i32 // CHECK: %[[BBUFFER:.*]] = triton_gpu.alloc_tensor // CHECK: %[[B0BUFFER:.*]] = triton_gpu.insert_slice_async {{.*}}, {{.*}}, %[[CONSTANT_0]] // CHECK: %[[B1BUFFER:.*]] = triton_gpu.insert_slice_async {{.*}}, {{.*}}, %[[CONSTANT_1]] // CHECK: triton_gpu.async_wait {num = 1 : i32} // CHECK: %[[B0:.*]] = tensor.extract_slice %[[B1BUFFER]][0, 0, 0] // CHECK: scf.for {{.*}} iter_args({{.*}}, {{.*}}, {{.*}}, %[[arg_b0:.*]] = %[[B0]], {{.*}}, {{.*}}, %[[PIPELINE_IDX:.*]] = %[[CONSTANT_2]], %[[LOOP_IDX:.*]] = %[[CONSTANT_1]] // CHECK: %[[arg_b0_dot_op:.*]] = triton_gpu.convert_layout %[[arg_b0]] // CHECK: tt.dot {{.*}}, %[[arg_b0_dot_op]], {{.*}} // CHECK-DAG: %[[INSERT_IDX:.*]] = arith.remsi %[[PIPELINE_IDX]], %[[CONSTANT_3]] // CHECK-DAG: %[[EXTRACT_INT:.*]] = arith.remsi %[[LOOP_IDX]], %[[CONSTANT_3]] // CHECK-DAG: %[[EXTRACT_IDX:.*]] = arith.index_cast %[[EXTRACT_INT]] : i32 to index // CHECK: %[[NEXT_B_BUFFER:.*]] = triton_gpu.insert_slice_async {{.*}}, {{.*}}, %[[INSERT_IDX]] // CHECK: triton_gpu.async_wait {num = 1 : i32} // CHECK: %[[NEXT_B:.*]] = tensor.extract_slice %[[NEXT_B_BUFFER]][%[[EXTRACT_IDX]], 0, 0] // CHECK-DAG: %[[NEXT_PIPELINE_IDX:.*]] = arith.addi %[[PIPELINE_IDX]], %[[CONSTANT_1]] // CHECK-DAG: %[[NEXT_LOOP_IDX:.*]] = arith.addi %[[LOOP_IDX]], %[[CONSTANT_1]] // CHECK: scf.yield {{.*}}, {{.*}}, %[[NEXT_B_BUFFER]], %[[NEXT_B]], {{.*}}, {{.*}}, %[[NEXT_PIPELINE_IDX]], %[[NEXT_LOOP_IDX]] func @matmul_loop_single_pipeline(%lb : index, %ub : index, %step : index, %A : !tt.ptr, %B : !tt.ptr) { %a_ptr_init = tt.broadcast %A : (!tt.ptr) -> tensor<128x32x!tt.ptr, #AL> %b_ptr_init = tt.broadcast %B : (!tt.ptr) -> tensor<32x128x!tt.ptr, #BL> %a_mask = arith.constant dense : tensor<128x32xi1, #AL> %a_other = arith.constant dense<0.00e+00> : tensor<128x32xf16, #AL> %a_ = tt.load %a_ptr_init, %a_mask, %a_other {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<128x32xf16, #AL> %a = triton_gpu.convert_layout %a_ : (tensor<128x32xf16, #AL>) -> tensor<128x32xf16, #A> %b_mask = arith.constant dense : tensor<32x128xi1, #BL> %b_other = arith.constant dense<0.00e+00> : tensor<32x128xf16, #BL> %c_init = arith.constant dense<0.00e+00> : tensor<128x128xf32, #C> %b_off = arith.constant dense<4> : tensor<32x128xi32, #BL> scf.for %iv = %lb to %ub step %step iter_args(%b_ptr = %b_ptr_init, %prev_c = %c_init) -> (tensor<32x128x!tt.ptr, #BL>, tensor<128x128xf32, #C>) { %b_ = tt.load %b_ptr, %b_mask, %b_other {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<32x128xf16, #BL> %b = triton_gpu.convert_layout %b_ : (tensor<32x128xf16, #BL>) -> tensor<32x128xf16, #B> %c = tt.dot %a, %b, %prev_c {allowTF32 = true, transA = false, transB = false} : tensor<128x32xf16, #A> * tensor<32x128xf16, #B> -> tensor<128x128xf32, #C> %next_b_ptr = tt.addptr %b_ptr, %b_off : tensor<32x128x!tt.ptr, #BL>, tensor<32x128xi32, #BL> scf.yield %next_b_ptr, %c : tensor<32x128x!tt.ptr, #BL>, tensor<128x128xf32, #C> } return }