import pytest import torch from torch.testing import assert_close import triton import triton.language as tl @triton.jit def matmul_no_scf_kernel( a_ptr, b_ptr, c_ptr, stride_am, stride_ak, stride_bk, stride_bn, stride_cm, stride_cn, M: tl.constexpr, N: tl.constexpr, K: tl.constexpr ): offs_m = tl.arange(0, M) offs_n = tl.arange(0, N) offs_k = tl.arange(0, K) a_ptrs = a_ptr + offs_m[:, None] * stride_am + offs_k[None, :] * stride_ak b_ptrs = b_ptr + offs_k[:, None] * stride_bk + offs_n[None, :] * stride_bn a = tl.load(a_ptrs) b = tl.load(b_ptrs) c = tl.dot(a, b) c_ptrs = c_ptr + offs_m[:, None] * stride_cm + offs_n[None, :] * stride_cn tl.store(c_ptrs, c) @pytest.mark.parametrize('SHAPE,NUM_WARPS,TRANS_A,TRANS_B', [ (shape, num_warps, trans_a, trans_b) for shape in [ [128, 256, 32], [256, 128, 16], [128, 16, 32], [32, 128, 64], [128, 128, 64], [64, 128, 128], ] for num_warps in [2, 4] for trans_a in [False, True] for trans_b in [False, True] ]) def test_gemm_no_scf(SHAPE, NUM_WARPS, TRANS_A, TRANS_B): SIZE_M, SIZE_N, SIZE_K = SHAPE if (TRANS_A): a = torch.randn((SIZE_K, SIZE_M), device='cuda', dtype=torch.float16).T else: a = torch.randn((SIZE_M, SIZE_K), device='cuda', dtype=torch.float16) if (TRANS_B): b = torch.randn((SIZE_N, SIZE_K), device='cuda', dtype=torch.float16).T else: b = torch.randn((SIZE_K, SIZE_N), device='cuda', dtype=torch.float16) c = torch.empty((SIZE_M, SIZE_N), device=a.device, dtype=torch.float32) grid = lambda META: (1, ) matmul_no_scf_kernel[grid](a_ptr=a, b_ptr=b, c_ptr=c, stride_am=a.stride(0), stride_ak=a.stride(1), stride_bk=b.stride(0), stride_bn=b.stride(1), stride_cm=c.stride(0), stride_cn=c.stride(1), M=SIZE_M, N=SIZE_N, K=SIZE_K, num_warps=NUM_WARPS) golden = torch.matmul(a, b) torch.set_printoptions(profile="full") assert_close(c, golden, rtol=1e-3, atol=1e-3, check_dtype=False) @pytest.mark.parametrize('SHAPE,NUM_WARPS,TRANS_A,TRANS_B', [ (shape, num_warps, trans_a, trans_b) for shape in [ [64, 128, 128], [128, 128, 128], [16, 8, 32], [32, 16, 64], [32, 16, 64], ] for num_warps in [1, 2, 4] for trans_a in [False, True] for trans_b in [False, True] ]) def test_gemm_no_scf_int8(SHAPE, NUM_WARPS, TRANS_A, TRANS_B): SIZE_M, SIZE_N, SIZE_K = SHAPE if (TRANS_A): a = torch.randint(-5, 5, (SIZE_K, SIZE_M), device='cuda', dtype=torch.int8).T else: a = torch.randint(-5, 5, (SIZE_M, SIZE_K), device='cuda', dtype=torch.int8) if (TRANS_B): b = torch.randint(-5, 5, (SIZE_N, SIZE_K), device='cuda', dtype=torch.int8).T else: b = torch.randint(-5, 5, (SIZE_K, SIZE_N), device='cuda', dtype=torch.int8) c = torch.empty((SIZE_M, SIZE_N), device=a.device, dtype=torch.int32) grid = lambda META: (1, ) matmul_no_scf_kernel[grid](a_ptr=a, b_ptr=b, c_ptr=c, stride_am=a.stride(0), stride_ak=a.stride(1), stride_bk=b.stride(0), stride_bn=b.stride(1), stride_cm=c.stride(0), stride_cn=c.stride(1), M=SIZE_M, N=SIZE_N, K=SIZE_K, num_warps=NUM_WARPS) aa = a.cpu() bb = b.cpu() golden = torch.matmul(aa.float(), bb.float()).int() torch.set_printoptions(profile="full") torch.testing.assert_close(c.cpu(), golden, check_dtype=False) @triton.jit def matmul_kernel( a_ptr, b_ptr, c_ptr, stride_am, stride_ak, stride_bk, stride_bn, stride_cm, stride_cn, M: tl.constexpr, N: tl.constexpr, K: tl.constexpr, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, ): offs_m = tl.arange(0, BLOCK_SIZE_M) offs_n = tl.arange(0, BLOCK_SIZE_N) offs_k = tl.arange(0, BLOCK_SIZE_K) a_ptrs = a_ptr + offs_m[:, None] * stride_am + offs_k[None, :] * stride_ak b_ptrs = b_ptr + offs_k[:, None] * stride_bk + offs_n[None, :] * stride_bn accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) for k in range(0, K, BLOCK_SIZE_K): a = tl.load(a_ptrs) b = tl.load(b_ptrs) accumulator += tl.dot(a, b) a_ptrs += BLOCK_SIZE_K * stride_ak b_ptrs += BLOCK_SIZE_K * stride_bk c_ptrs = c_ptr + offs_m[:, None] * stride_cm + offs_n[None, :] * stride_cn tl.store(c_ptrs, accumulator) def get_variant_golden(a, b): SIZE_M = a.shape[0] SIZE_K = a.shape[1] SIZE_N = b.shape[1] assert a.shape[1] == b.shape[0] zero_M_K = torch.zeros((SIZE_M, SIZE_K)).cuda() zero_3M_K = torch.zeros((3 * SIZE_M, SIZE_K)).cuda() zero_K_N = torch.zeros((SIZE_K, SIZE_N)).cuda() zero_3K_N = torch.zeros((3 * SIZE_K, SIZE_N)).cuda() a_padded = torch.cat((a, zero_M_K, zero_M_K), 0) a_padded = torch.cat((a_padded, zero_3M_K, zero_3M_K), 1) b_padded = torch.cat((b, zero_K_N, zero_K_N), 0) b_padded = torch.cat((b_padded, zero_3K_N, zero_3K_N), 1) c_padded = torch.matmul(a_padded, b_padded) return c_padded[:SIZE_M, :SIZE_N] # It's not easy to get a proper error threshold in different size # Here the gemm calculation is padded to a different size in order to get # a variant version of the golden result. And the error between golden and # golden_variant provide reference on selecting the proper rtol / atol. def get_proper_err(a, b, golden): golden_variant = get_variant_golden(a, b) golden_diff = golden - golden_variant golden_abs_err = torch.max(torch.abs(golden_diff)).item() golden_rel_err = torch.max(torch.abs(golden_diff / golden)).item() return (golden_abs_err, golden_rel_err) @pytest.mark.parametrize('SIZE_M,SIZE_N,SIZE_K,NUM_WARPS,BLOCK_SIZE_M,BLOCK_SIZE_N,BLOCK_SIZE_K,TRANS_A,TRANS_B', [ # Non-forloop [64, 32, 64, 4, 64, 32, 64, False, False], [128, 64, 128, 4, 128, 64, 128, False, False], [16, 16, 16, 16, 16, 16, 16, False, False], # wpt overflow issue # K-Forloop # [16, 16, 64, 4, 8, 8, 8, False, False], # Wrap threads [32, 32, 64, 4, 32, 32, 32, False, False], # Single shared encoding [16, 16, 128, 4, 16, 16, 16, False, False], # Single shared encoding and small k [64, 32, 128, 4, 64, 32, 64, False, False], [128, 16, 128, 4, 128, 16, 32, False, False], [32, 16, 128, 4, 32, 16, 32, False, False], [32, 64, 128, 4, 32, 64, 32, False, False], [32, 128, 256, 4, 32, 128, 64, False, False], [64, 128, 64, 4, 64, 128, 32, False, False], [64, 64, 128, 4, 64, 64, 32, False, False], [128, 128, 64, 4, 128, 128, 32, False, False], [128, 128, 128, 4, 128, 128, 32, False, False], [128, 128, 256, 4, 128, 128, 64, False, False], [128, 256, 128, 4, 128, 256, 32, False, False], [256, 128, 64, 4, 256, 128, 16, False, False], [128, 64, 128, 4, 128, 64, 32, False, False], [16, 16, 64, 4, 16, 16, 16, False, False], [32, 32, 64, 4, 32, 32, 32, False, False], # trans [128, 64, 128, 4, 128, 64, 32, True, False], [128, 64, 128, 4, 128, 64, 32, False, True], ]) def test_gemm(SIZE_M, SIZE_N, SIZE_K, NUM_WARPS, BLOCK_SIZE_M, BLOCK_SIZE_N, BLOCK_SIZE_K, TRANS_A, TRANS_B): if (TRANS_A): a = torch.randn((SIZE_K, SIZE_M), device='cuda', dtype=torch.float16).T else: a = torch.randn((SIZE_M, SIZE_K), device='cuda', dtype=torch.float16) if (TRANS_B): b = torch.randn((SIZE_N, SIZE_K), device='cuda', dtype=torch.float16).T else: b = torch.randn((SIZE_K, SIZE_N), device='cuda', dtype=torch.float16) c = torch.empty((SIZE_M, SIZE_N), device=a.device, dtype=torch.float32) grid = lambda META: (1, ) matmul_kernel[grid](a_ptr=a, b_ptr=b, c_ptr=c, stride_am=a.stride(0), stride_ak=a.stride(1), stride_bk=b.stride(0), stride_bn=b.stride(1), stride_cm=c.stride(0), stride_cn=c.stride(1), M=a.shape[0], N=b.shape[1], K=a.shape[1], BLOCK_SIZE_M=BLOCK_SIZE_M, BLOCK_SIZE_N=BLOCK_SIZE_N, BLOCK_SIZE_K=BLOCK_SIZE_K, num_warps=NUM_WARPS) golden = torch.matmul(a, b) golden_abs_err, golden_rel_err = get_proper_err(a, b, golden) torch.set_printoptions(profile="full") assert_close(c, golden, rtol=max(1e-4, 1.5 * golden_rel_err), atol=max(1e-4, 1.5 * golden_abs_err), check_dtype=False) @pytest.mark.parametrize('M,N,K,num_warps,block_M,block_N,block_K,allow_tf32', [ [32, 32, 16, 4, 32, 32, 16, False], [32, 32, 16, 4, 32, 32, 16, True], [32, 16, 16, 4, 32, 32, 16, False], [32, 16, 16, 4, 32, 32, 16, True], [127, 41, 43, 4, 32, 32, 16, False], [127, 41, 43, 4, 32, 32, 16, True], [128, 8, 8, 4, 32, 32, 16, False], [128, 8, 8, 4, 32, 32, 16, True] ]) def test_gemm_fp32(M, N, K, num_warps, block_M, block_N, block_K, allow_tf32): @triton.jit def matmul_kernel( a_ptr, b_ptr, c_ptr, M, N, K, stride_am, stride_ak, stride_bk, stride_bn, stride_cm, stride_cn, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, ALLOW_TF32: tl.constexpr ): pid = tl.program_id(axis=0) # num_pid_m = tl.cdiv(M, BLOCK_SIZE_M) num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) pid_m = pid // num_pid_n pid_n = pid % num_pid_n offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_bn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) offs_k = tl.arange(0, BLOCK_SIZE_K) a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak) b_ptrs = b_ptr + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn) accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) for k in range(0, K, BLOCK_SIZE_K): a_mask = (offs_am[:, None] < M) & (offs_k[None, :] < K) b_mask = (offs_k[:, None] < K) & (offs_bn[None, :] < N) a = tl.load(a_ptrs, a_mask, other=0.0) b = tl.load(b_ptrs, b_mask, other=0.0) accumulator += tl.dot(a, b, allow_tf32=ALLOW_TF32) a_ptrs += BLOCK_SIZE_K * stride_ak b_ptrs += BLOCK_SIZE_K * stride_bk offs_k += BLOCK_SIZE_K offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) c_ptrs = c_ptr + offs_cm[:, None] * stride_cm + offs_cn[None, :] * stride_cn c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N) tl.store(c_ptrs, accumulator, c_mask) # Configure the pytorch counterpart torch.backends.cuda.matmul.allow_tf32 = allow_tf32 a = torch.randn((M, K), device='cuda', dtype=torch.float32) b = torch.randn((K, N), device='cuda', dtype=torch.float32) c = torch.empty((M, N), device=a.device, dtype=torch.float32) grid = lambda META: (triton.cdiv(M, META['BLOCK_SIZE_M']) * triton.cdiv(N, META['BLOCK_SIZE_N']),) matmul_kernel[grid](a, b, c, M, N, K, stride_am=a.stride(0), stride_ak=a.stride(1), stride_bk=b.stride(0), stride_bn=b.stride(1), stride_cm=c.stride(0), stride_cn=c.stride(1), BLOCK_SIZE_M=block_M, BLOCK_SIZE_N=block_N, BLOCK_SIZE_K=block_K, ALLOW_TF32=allow_tf32) golden = torch.matmul(a, b) golden_abs_err, golden_rel_err = get_proper_err(a, b, golden) if allow_tf32: # TF32 is not accurate enough torch.testing.assert_close(c, golden, rtol=max(1e-2, 1.5 * golden_rel_err), atol=max(1e-2, 1.5 * golden_abs_err)) else: torch.testing.assert_close(c, golden, rtol=max(1e-4, 1.5 * golden_rel_err), atol=max(1e-4, 1.5 * golden_abs_err)) # NOTE this is useful only on Volta GPU. @pytest.mark.parametrize('SIZE_M,SIZE_N,SIZE_K,NUM_WARPS,BLOCK_SIZE_M,BLOCK_SIZE_N,BLOCK_SIZE_K,TRANS_A,TRANS_B', [ # Non-forloop # [16, 16, 16, 1, 16, 16, 16, False, False], # [16, 16, 32, 1, 16, 16, 32, False, False], # [32, 16, 32, 1, 32, 16, 32, False, False], # [32, 32, 32, 1, 32, 32, 32, False, False], # [128, 32, 32, 1, 128, 32, 32, False, False], # [128, 32, 32, 1, 128, 32, 32, True, False], # [128, 32, 32, 1, 128, 32, 32, True, True], # # split-K # [16, 16, 32, 1, 16, 16, 16, False, False], # [64, 64, 128, 1, 64, 64, 32, False, False], # [16, 16, 32, 1, 16, 16, 16, True, False], # [16, 16, 32, 1, 16, 16, 16, True, True], [64, 64, 64, 1, 64, 64, 32, True, False], ]) def test_gemm_for_mmav1(SIZE_M, SIZE_N, SIZE_K, NUM_WARPS, BLOCK_SIZE_M, BLOCK_SIZE_N, BLOCK_SIZE_K, TRANS_A, TRANS_B): test_gemm(SIZE_M, SIZE_N, SIZE_K, NUM_WARPS, BLOCK_SIZE_M, BLOCK_SIZE_N, BLOCK_SIZE_K, TRANS_A, TRANS_B)