import pytest import torch from torch.testing import assert_close import triton import triton.language as tl @triton.jit def kernel(x_ptr, stride_xm, z_ptr, stride_zn, SIZE_M: tl.constexpr, SIZE_N: tl.constexpr): off_m = tl.arange(0, SIZE_M) off_n = tl.arange(0, SIZE_N) Xs = x_ptr + off_m[:, None] * stride_xm + off_n[None, :] * 1 Zs = z_ptr + off_m[:, None] * 1 + off_n[None, :] * stride_zn tl.store(Zs, tl.load(Xs)) # These sizes cover the case of: # - blocked layout and sliced layout with block parent # -- blocked layout in which sizePerThread/threadsPerWarp/warpsPerCTA # need/need not to be wrapped # -- sliced layout incase sizePerThread need to be wrapped # -- different orders # - LayoutConversion from blocked -> blocked # - tt.Broadcast which requires for broadcast in either/both of # CTA/perThread level # What is not covered and requires for TODO: # - vectorization load/store of shared memory # - multiple replication of layout conversion @pytest.mark.parametrize('NUM_WARPS,SIZE_M,SIZE_N', [ [1, 16, 16], [1, 32, 32], [1, 32, 64], [2, 64, 128], [2, 128, 64] ]) def test_convert_layout_impl(NUM_WARPS, SIZE_M, SIZE_N): grid = lambda META: (1, ) x = torch.randn((SIZE_M, SIZE_N), device='cuda', dtype=torch.float32) z = torch.empty((SIZE_N, SIZE_M), device=x.device, dtype=x.dtype) kernel[grid](x_ptr=x, stride_xm=x.stride(0), z_ptr=z, stride_zn=z.stride(0), SIZE_M=SIZE_M, SIZE_N=SIZE_N, num_warps=NUM_WARPS) golden_z = torch.t(x) assert_close(z, golden_z, rtol=1e-7, atol=1e-7, check_dtype=False)