import os import sys import re import random import numpy as np from sklearn.neighbors.kde import KernelDensity from pyviennacl.atidlas import FetchingPolicy def decode(y): fetch = [FetchingPolicy.FETCH_FROM_LOCAL, FetchingPolicy.FETCH_FROM_GLOBAL_CONTIGUOUS, FetchingPolicy.FETCH_FROM_GLOBAL_STRIDED] y[7] = fetch[y[7]] y[8] = fetch[y[8]] return y def resample(X, tbincount, densities, step): Xtuples = [tuple(x) for x in X] r = random.random() while(True): if(len(tbincount)==0 or len(densities)==0 or r<=1.0/len(densities)): x = np.array([step*random.randint(1,40), step*random.randint(1,40), step*random.randint(1,40)]) else: probs = [1.0/x if x>0 else 0 for x in tbincount] distr = np.random.choice(range(tbincount.size), p = probs/np.sum(probs)) x = densities[distr].sample()[0] x = np.maximum(np.ones(x.shape),(x - step/2).astype(int)/step + 1)*step if tuple(x) not in Xtuples: break return x.astype(int) def generate_dataset(TemplateType, execution_handler): I = 50 step = 64 path = "./data" # print "Getting some good profiles..." # X = np.empty((I, 3)) # t = np.empty(I) # profiles = [] # for i in range(I): # x = resample(X, [], [], step) # y = execution_handler(x) # if y not in profiles: # profiles.append(y) # idx = profiles.index(y) # X[i,:] = x # t[i] = idx # densities = [KernelDensity(kernel='gaussian', bandwidth=2*step).fit(X[t==i,:]) for i in range(int(max(t))+1)]; # # print "Generating the dataset..." # N = 10000 # Y = np.empty((N, len(profiles))) # X = np.empty((N,3)) # t = [] # # for i in range(N): # x = resample(X, [], [], step) # for j,y in enumerate(profiles): # T = execution_handler(x, os.devnull, decode(map(int, y))) # Y[i,j] = 2*1e-9*x[0]*x[1]*x[2]/T # idx = np.argmax(Y[i,:]) # X[i,:] = x # t = np.argmax(Y[:i+1,], axis=1) # densities[idx].fit(X[t==idx,:]) # if i%10==0: # sys.stdout.write('%d data points generated\r'%i) # sys.stdout.flush() # # np.savetxt(os.path.join(path,"profiles.csv"), profiles) # np.savetxt(os.path.join(path,"X.csv"), X) # np.savetxt(os.path.join(path,"Y.csv"), Y) profiles = np.loadtxt(os.path.join(path,"profiles.csv")) X = np.loadtxt(os.path.join(path,"X.csv")) Y = np.loadtxt(os.path.join(path,"Y.csv")) return X, Y, profiles