import array import numpy as np import random import sys import itertools import tools import deap.tools from genetic import GeneticOperators #~ def parameter_space(operation): #~ simd = [1, 2, 4, 8] #~ pow2_1D = [2**k for k in range(12)] #~ pow2_2D = [2**i for i in range(8)] #~ pow2_2D_unrolled = [2**i for i in range(8)] #~ FetchingPolicy = vcl.atidlas.FetchingPolicy #~ fetch = [FetchingPolicy.FETCH_FROM_LOCAL, FetchingPolicy.FETCH_FROM_GLOBAL_CONTIGUOUS, FetchingPolicy.FETCH_FROM_GLOBAL_STRIDED] #~ if operation == 'vector-axpy': return [simd, pow2_1D, pow2_1D, fetch] #~ if operation == 'reduction': return [simd, pow2_1D, pow2_1D, fetch] #~ if operation == 'matrix-axpy': return [simd, pow2_2D, pow2_2D, pow2_2D, pow2_2D, fetch] #~ if operation == 'row-wise-reduction': return [simd, pow2_2D, pow2_2D, pow2_1D, fetch] #~ if operation == 'matrix-product': return [simd, pow2_2D, pow2_2D, pow2_2D, pow2_2D_unrolled, pow2_2D_unrolled, pow2_2D_unrolled, fetch, fetch, [0] + pow2_2D, [0] + pow2_2D] #~ #~ def exhaustive(statement, context, TemplateType, build_template, parameter_names, all_parameters, compute_perf, perf_metric, out): #~ device = context.devices[0] #~ nvalid = 0 #~ current = 0 #~ minT = float('inf') #~ for individual in itertools.product(*all_parameters): #~ template = build_template(TemplateType.Parameters(*individual)) #~ if not tools.skip(template, statement, device): #~ nvalid = nvalid + 1 #~ for individual in itertools.product(*all_parameters): #~ template = build_template(TemplateType.Parameters(*individual)) #~ try: #~ T = tools.benchmark(template,statement,device) #~ current = current + 1 #~ if T < minT: #~ minT = T #~ best = individual #~ sys.stdout.write('%d / %d , Best is %d %s for %s\r'%(current, nvalid, compute_perf(minT), perf_metric, best)) #~ sys.stdout.flush() #~ except: #~ pass #~ sys.stdout.write('\n') #~ sys.stdout.flush() #~ def genetic(statement, device, TemplateType, build_template, compute_perf, perf_metric, out): GA = GeneticOperators(device, statement, TemplateType, build_template, out) return GA.optimize(maxtime='2m30s', maxgen=1000, compute_perf=compute_perf, perf_metric=perf_metric)