import libtriton import tensorflow as tf import distutils import distutils.log import setuptools.command.build_ext import setuptools import numpy as np import os import tempfile import shutil import hashlib src = """ const tunable int TM = {128}; const tunable int TN = {128}; const tunable int TK = {32}; void matmul(restrict read_only align(16) half *A, restrict read_only align(16) half *B, restrict read_only align(16) half *C, int M, int N, int K, multiple_of(8) int lda, multiple_of(8) int ldb, int ldc) { int ridx = get_range_id(0); int ridy = get_range_id(1); int rxa[TM] = ridx * TM + (0 ... TM); int ryb[TN] = ridy * TN + (0 ... TN); int rka[TK] = 0 ... TK; int rkb[TK] = 0 ... TK; float xc[TM, TN] = 0; half* pa[TM, TK] = A + rka[newaxis, :]*lda + rxa[:, newaxis]; half* pb[TN, TK] = B + rkb[newaxis, :]*ldb + ryb[:, newaxis]; half a[TM, TK] = *pa; half b[TN, TK] = *pb; for(int k = K; k > 0; k = k - TK){ xc = dot(a, trans(b), xc); pa = pa + TK*lda; pb = pb + TK*ldb; a = *pa; b = *pb; } int rxc[TM] = ridx * TM + (0 ... TM); int ryc[TN] = ridy * TN + (0 ... TN); half* pc[TM, TN] = C + ryc[newaxis, :]*ldc + rxc[:, newaxis]; half c[TM, TN] = xc; bool checkc0[TM] = rxc < M; bool checkc1[TN] = ryc < N; bool checkc[TM, TN] = checkc0[:, newaxis] && checkc1[newaxis, :]; @checkc *pc = c; } """ extra_ops = tf.load_op_library('/home/philippe/development/triton/python/build/lib.linux-x86_64-3.6/libextra_tf_ops.so') def make_bindings(src, outputs, grids): return libtriton.make_tensorflow_src(src, outputs, grids) def make_cache_path(src): md5 = hashlib.sha1(src.encode()) hexhash = md5.hexdigest() home = os.path.expanduser('~') cacheroot = os.path.join(home, '.triton', 'cache') cachepath = os.path.join(cacheroot, str(hexhash)) if not os.path.exists(cachepath): os.makedirs(cachepath) print(cachepath) return cachepath def write_bindings(src, root): cpp = os.path.join(root, 'tensorflow.cpp') so = os.path.join(root, 'tensorflow.so') recompile = False # recompile if .so does not exist if not os.path.exists(cpp) or not os.path.exists(so): recompile = True # recompile if cpp was modified after .so elif max(cpp, so, key=os.path.getctime) == cpp: recompile = True # write cpp file if recompile: with open(cpp, 'w+') as handle: handle.writelines(src) # return path of cpp file return cpp def build(src, path): # include directories triton_include_dirs = ['/home/philippe/development/triton/include'] tensorflow_include_dirs = [tf.sysconfig.get_include()] cuda_include_dirs = ['/usr/local/cuda-10.1/targets/x86_64-linux/include/'] include_dirs = triton_include_dirs + tensorflow_include_dirs + cuda_include_dirs # library directories triton_library_dirs = [os.path.realpath(os.path.join(libtriton.__file__, os.path.pardir))] tensorflow_library_dirs = [tf.sysconfig.get_lib()] library_dirs = triton_library_dirs + tensorflow_library_dirs # libraries libraries = ['tensorflow_framework', 'triton'] # extra arguments extra_compile_args = [] extra_link_args = [] # create extension module ext = setuptools.Extension( name = 'test', language = 'c++', sources = [src], include_dirs = include_dirs, extra_compile_args = extra_compile_args, extra_link_args = extra_link_args, library_dirs = library_dirs, libraries = libraries ) # build extension module args = ['build_ext'] tmp = tempfile.mkdtemp() args.append('--build-temp=' + tmp) args.append('--build-lib=' + path) args.append('-q') args = dict( name = 'test', ext_modules = [ext], script_args = args, ) setuptools.setup(**args) shutil.rmtree(tmp) def make_tensorflow_op(src, outputs, grids): bindings = make_bindings(src, outputs, grids) cache_path = make_cache_path(bindings) cpp = write_bindings(bindings, cache_path) build(cpp, cache_path) result = tf.load_op_library(os.path.join(cache_path, 'test.cpython-36m-x86_64-linux-gnu.so')) return result library_dir = os.path.dirname(os.path.realpath(__file__)) module = make_tensorflow_op(src, ['C'], ['(M + #TM - 1)/#TM', '(N + #TN - 1)/#TN']) print(module.matmul) class dot: def __init__(self): trans_a = True trans_b = False def __call__(self, a, b): shape_a = tf.shape(a) shape_b = tf.shape(b) M = shape_a[0] K = shape_a[1] N = shape_b[0] lda = M ldb = K ldc = M c = extra_ops.alloc_empty(tf.stack([M, N])) return module.matmul(a, b, c, M, N, K, lda, ldb, ldc) dot_nt = dot() def run_dot(): M, N, K = 128, 128, 128 a = tf.placeholder(tf.float16, shape=[M, K]) b = tf.placeholder(tf.float16, shape=[N, K]) # c = tf.matmul(a, b, transpose_a=True) c = dot_nt(a, b) # Reference ha = np.random.rand(M, K).astype(np.float16) hb = np.random.rand(N, K).astype(np.float16) # Run sess = tf.InteractiveSession() sess.run(tf.global_variables_initializer()) result = sess.run([c], feed_dict = {a: ha, b: hb})[0] # Test hresult = np.dot(ha.T, hb).T dif = np.abs(result - hresult) np.savetxt('dif.dat', dif, '%2.4f') print(hresult) print(result) print("dif: %f" % np.max(dif)) run_dot()